• Title/Summary/Keyword: Composite Shaft

검색결과 86건 처리시간 0.029초

복합재료 골프샤프트의 적층최적화 (Optimization of stacking sequence for composite golf club shafts)

  • 김무선;한동철;김선진;이우일
    • Composites Research
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2007
  • 본 논문에서는 골프클럽샤프트의 정적특성의 최적화 방법론을 제시하였다. 복합재료를 사용한 샤프트의 최적성능향상을 위한 쉬트 프리프레그의 적층순서를 구하였다. 클럽샤프트의 굽힘 강성과 비틀림 강성의 동시 최적화를 위하여 새로운 최적화 목적함수를 제시하였다. 샤프트의 정적특성 분석을 위하여 고전적층 이론을 적용하였으며 최적화 방법으로서 적층순서를 설계변수로 정의하는 유전알고리즘을 사용하였다. 또한 얻어진 최적적층순서를 바탕으로 한 샤프트의 동적특성을 분석하였다.

대수심 대형 복합기초에서 설계기법에 따른 대구경 현장타설말뚝의 거동 분석 연구 (A Study on Behavior Analysis of Large-diameter Drilled Shaft by Design Methods in Deep Water Depth Composite Foundation)

  • 한유식;최용규
    • 한국지반환경공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.5-16
    • /
    • 2015
  • 장대교량의 공사비에서 대형 해상기초가 차지하는 비중은 약 40% 수준이다(KICTEP, 2007). 본 연구에서는 가상의 초장대 사장교에서 대수심 대형 복합기초에 대하여 3가지 설계법(허용응력 설계, LRFD 설계, 유로코드 설계)으로 설계검토를 실시하였고, 3차원 유한요소 해석을 통하여 대구경 현장타설말뚝의 거동에 관한 연구를 수행하였다. 그 결과, 허용응력 설계에서 추정한 방법이 연암 소켓길이가 가장 길었다. LRFD와 유로코드 설계법 2에 의해 계산된 연암소켓 길이는 유사하였다. 대구경 현장타설말뚝의 연암소켓길이가 길어짐에 따라 대구경 현장타설말뚝 두부에 작용하는 축력은 작아졌으며 현장타설말뚝의 침하량도 작아졌다.

자동차용 알루미늄/복합재료 하이브리드 동력전달축의 압입접합부 설계에 관한 연구 (A study on the design of the press fit joint for automotive aluminum/composite hybrid propeller shaft)

  • 김학성;이대길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.226-231
    • /
    • 2004
  • Press fitting method for joining of a hybrid tube and steel ring with small teeth for automotive aluminum/composite hybrid propeller shaft was devised to improve reliability and to reduce manufacturing cost, compared to other joining methods such as an adhesively bonded joint, bolted joint or welded joint. To obtain high strength of the press fit joint, an optimal design method for the teeth was devised with respect to number and shape of the steel teeth. Torsional static, fatigue tests and finite element analysis of the press fit joint were performed with respect to experimental variables. The developed optimal design method predicted well the static torque capability and failure mode of the press fit joint. Also, it provided design guide line of press fit joint for improving torsional static and fatigue characteristics.

  • PDF

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi;Hadi Arvin;Yaghoub Tadi Beni;Krzysztof Kamil Zur
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.457-471
    • /
    • 2024
  • In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.

골프 샤프트의 역학적 거동 평가에 관한 연구 (A Study on the Evaluation of Mechanical Behavior of Golf Shafts)

  • 정성교;윤형택;정성균;임승규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.44-47
    • /
    • 2002
  • 본 연구에서는 카본 복합재료로 만든 골프 샤프트에 대한 선형 정적 및 동적 해석을 수행하였다. 골프 샤프트에서 가장 중요한 인자인 처짐량, 비틀림각, 진동 및 킥포인트에 대한 해석을 유한요소법을 적용하여 수행하였으며, 골프 샤프트의 성능에 미치는 주요 인자들의 영향을 연구하였다. 골프 샤프트의 중요 인자들은 섬유의 물성, 디자인 패턴에 크게 의존하며, 본 연구 결과는 일반적인 골프샤프트의 설계에 있어서 참고 자료가 될 수 있을 것으로 본다.

  • PDF

유전자 알고리즘을 이용한 유연 복합재 구동축의 최적 설계 (Optimum Design of a Flexible Matrix Composite Driveshaft Using Genetic Algorithms)

  • 홍을표;신응수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.109-115
    • /
    • 2003
  • This study intends to provide an optimum design of flexible matrix composite driveshafts using a genetic algorithm. An objective function is defined as a combination of shaft flexibility, whirling stability and torsional buckling and the design variables are selected as ply angles and the shaft thickness. Results show that the genetic algorithm can successfully find an optimum solution at which the overall performance of the FMC shafts is significantly enhanced

  • PDF

소형 선박용 복합재료 축 설계를 위한 음력해석에 관한 연구 (A Study on the Stress Analysis for Design of Composite Material Shafts of Small Boats)

  • 김윤해;임철문;배창원;왕지석
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.308-313
    • /
    • 2002
  • It is known that the composite material shafts using on small boats have various advantages comparing to forged steel shafts, fur examples, specific strength, fatigue strength, corrosion, etc. The analysis of the stresses and strains in the composite material shafts made by filament winding method is presented in this paper. The classical laminated plate theory is applied on the patch cut from the composite material hollow shafts. It is verified that the composite material hollow shafts of diameter 40 mm is the most optimum when the ratio of the inner diameter to the outer is 0.4 and winding angle is 45$^{\circ}$. It is also proven that the shear strain does not change seriously between 30$^{\circ}$and 60$^{\circ}$of winding angles. It is dangerous when the winding angle is over 75$^{\circ}$because the values of shear strain and stress produced on the shaft are too high so it must be avoided to wind the filament by the angle over 75$^{\circ}$.

지반 반력 스프링 시스템을 이용한 강관 합성 말뚝의 수평 지지 특성 평가 (Estimation of the lateral behavior of steel-concrete composite piles using subgrade-reaction spring system)

  • 권형민;이주형;박재현;정문경;곽기석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.388-395
    • /
    • 2009
  • Steel casing used to keep a borehole wall in the construction of drilled shaft increases the vertical and lateral stiffness and strength of pile, but it is usually pulled out or ignored due to the absence of standard or the problem of erosion of steel casing. In order to make use of steel casing as a permanent structure, this study carried out an experimental work for the steel-concrete composite pile. Four types of piles were used to estimate the lateral behavior of piles, which are reinforced concrete pile, steel pile and steel-concrete composite pile with and without reinforcing bar. The subgrade-reaction spring system was developed to simulate the lateral stiffness of soil in laboratory. Also, the composite loading system which can apply the axial and lateral load simultaneously was employed.

  • PDF

4륜구동 SUV 차량용 구동축 경량화를 위한 CFRP 튜브 개발 (Development of CFRP Tubes for the Light-Weight Propeller Shaft of 4WD SUV Vehicles)

  • 나혜중;천진성;조규상
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.32-38
    • /
    • 2018
  • In this study, the one-piece propeller shaft composed of carbon/epoxy was designed and manufactured for 4 wheel drive automobiles that can bear the target torsional torque performance of 3.5kN.m. For the CFRP tube, braiding machine was used to weaving carbon fiber and it was formed the braided yarns with the braid angle ${\pm}45^{\circ}$ and axial yarns to improve strength of the lengthwise direction. The final CFRP tube of propeller shaft was evaluated through the torsional torque test. The CFRP propeller shaft satisfied requirement of the target torsional maximum torque of 3.5kN.m. Also, it was found that the one-piece composite propeller shaft with CFRP tube had 30% weight saving effect compared with a two-piece steel propeller shaft.

고속 구동축의 지지부강성이 안정성에 미치는 영향 (Effects of Foundation Stiffness on the Stability of Supercritical Driveshafts)

  • 신응수;김태광
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.603-607
    • /
    • 2008
  • This paper is to investigate the effects of support conditions on the whirling stability of a supercritical composite driveshaft. Two system parameters are rigorously considered: one is the bending stiffness of the support beam/bearings and the other is the rotating internal damping of the shaft. An analytic model is developed based on finite element methods and an eigenvalue analysis is employed to estimate the shaft stability under supercritical operating conditions. Results show that the internal damping causes the whirling instability at a supercritical speed, as demonstrated in other previous studies. However, the bending stiffness of the support beam is found to affect greatly the stability behaviors of a supercritical shaft and several combinations of the shaft/beam stiffness can be identified to guarantee the stable operation even in a supercritical region.

  • PDF