• 제목/요약/키워드: Composite Preforms

검색결과 59건 처리시간 0.019초

Manufacturing and characterization of tufted preform with complex shape

  • Gnaba, Imen;Wang, Peng;Legrand, Xavier;Soulat, Damien
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.105-116
    • /
    • 2019
  • An alternative to the multilayered preforming is to use structures reinforced through-the-thickness in order to manufacture thicker and more complex pieces. Stitching technology is developed to bind dry reinforcements together or to strengthen composites in thickness performance by inserting structural yarns. Tufting process represents the simplest one-sided sewing technology and it is specifically designed for dry preform/liquid composite molding process route. Currently, the tufting technology is getting more and more interest due to its simplest and efficient process where it involves the insertion of binder threads via a single needle through the fabric. This technique of reinforcement through-the-thickness requires only one access to the preform which makes it suitable for three-dimensional structures and complex shaped textile composites. This paper aims to improve the understanding of the mechanical performance of tufted structures. An experimental study was developed, which included tensile and bending behaviours of tufted and un-tufted preforms, in order to evaluate the effect of tufting on the mechanical performance of dry preforms. The influence of the process parameters (tufting density, loop length, tufting yarns${\ldots}$) on the mechanical performance ofthe final structure is also highlighted.

반응 금속 침투법에 의한 $Al/Al_2O_3$복합체의 제조 및 기계적 특성 (Fabrication and mechanical properties of $Al/Al_2O_3$ composites by reactive metal penetration method)

  • 윤영훈;홍상우;최성철
    • 한국결정성장학회지
    • /
    • 제11권6호
    • /
    • pp.239-245
    • /
    • 2001
  • 뮬라이트 preform과 비정질 실리카를 알루미늄 용융체에서 $1100^{\circ}C$, 5시간 동안 반응시켜 $Al/Al_2O_3$복합체가 제조되었다. 뮬라이트 preform과 알루미늄 용융체 간의 화학적 반응은 상호 연결된 미세구조를 형성하였다. $Al/Al_2O_3$복합체의 금속의 양은 뮬라이트 preform의 소결 온도($1600^{\circ}C$, $1625^{\circ}C$, $1650^{\circ}C$, $1700^{\circ}C$)에 따른 겉보기 기공율의 변수로서 조절되었으며, 복합체의 기계적 특성들은 알루미늄 양에 따라 조사되었다. $1600^{\circ}C$ 이상의 온도에서 소결된 뮬라이트 preform은 침투된 알루미늄 용융체와 화학반응을 이루었으나, $1600^{\circ}C$에서 소결된 뮬라이트 소결체는 알루미늄 용융체에 대해 젖음이 이루어지지 않아 화학반응이 진행되지 않았다. 알루미늄 용융체의 침투 방향에 따른 복합체의 기계적 특성에 대한 영향은 알루미늄 용융체의 수직, 평행한 침투 방향 패턴의 두 가지 다른 모델들에 의해 고려되었다. $Al/Al_2O_3$복합체에서 알루미늄의 양의 증가에 따라 파괴강도는 감소하였으며, 파괴인성은 증가하는 경향을 나타냈다.$ Al/Al_2O_3$복합체의 미세구조는 금속의 침투 방향에 의해 결정되었지만, 복합체의 파괴강도와 파괴인성은 금속 침투 방향에 대한 의존성은 나타내지 않았다.

  • PDF

HP-CRTM 성형공법을 적용하기 위한 NCF 복합재 적층구조에 따른 인장특성 분석 (Tensile Property Analysis of NCF Composite Laminated Structure for HP-CRTM Forming Process)

  • 변기석;신유정;정한규;박시우;노춘수;제진수;권기철
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, the HP-CRTM method, which has the ability to produce carbon fiber-reinforce plastic composites at high speeds, has come into the spotlight in the automotive parts industry, which demands high productivity. Multi-axial carbon fabric, an intermediate material used in this HP-CRTM molding process, consists of layered fibers without crimp, which makes it better in terms of tensile and shear strength than the original woven fabrics. The NCF (non-crimp fabric) can form the layers of the carbon fiber, which have different longitudinal and lateral directions, and ${\pm}{\theta}$ degrees, depending on the product's properties. In this research, preforms were made with carbon fibers of ${\pm}45^{\circ}$ and $0/90^{\circ}$, which were lamination structures under seven different conditions, in order to create the optimal laminated structure for automobile reinforcement center floor tunnels. Carbon fiber composites were created using each of the seven differently laminated preforms, and polyurethane was used as the base material. The specimens were manufactured in accordance with the ASTM D3039 standards, and the effect of the NCF lamination structure on the mechanical properties was confirmed by a tensile test.

Carbon Fiber Reinforced Ceramics based on Reactive Melt Infiltration Processes

  • Lenz, Franziska;Krenkel, Walter
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.287-294
    • /
    • 2012
  • Ceramic Matrix Composites (CMCs) represent a class of non-brittle refractory materials for harsh and extreme environments in aerospace and other applications. The quasi-ductility of these structural materials depends on the quality of the interface between the matrix and the fiber surface. In this study, a manufacture route is described where in contrast to most other processes no additional fiber coating is used to adjust the fiber/matrix interfaces in order to obtain damage tolerance and fracture toughness. Adapted microstructures of uncoated carbon fiber preforms were developed to permit the rapid infiltration of molten alloys and the subsequent reaction with the carbon matrix. Furthermore, any direct reaction between the melt and fibers was minimized. Using pure silicon as the reactive melt, C/SiC composites were manufactured with an aim of employing the resulting composite for friction applications. This paper describes the formation of the microstructure inside the C/C preform and resulting C/C-SiC composite, in addition to the MAX phases.

수지이송성형시 다층 예비성형체 내부에서의 수지유동 및 투과 계수에 관한 연구 (A Study on Resin Flow through a Multi-layered Preform in Resin Transfer Molding)

  • Seong, Dong-Gi;Youn, Jae-Ryoun
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.176-179
    • /
    • 2001
  • When the preform is composed of more than two layers with different in-plane permeability in resin transfer molding, effective average permeability should be determined for the flow analysis in the mold. The most frequently used averaging scheme is the weighted average scheme, but it does not account for the transverse flow between adjacent layers. A new averaging scheme is proposed predicting the effective permeability of the multi-layered preform, which accounts for the transverse flow effect. The new scheme is verified by measuring the effective permeability of the multi-layered preforms and the difference in each flow front position.

  • PDF

3차원 직조형 금속복합재료의 제조와 특성분석 (Fabrication and Characterization of Al Matrix Composites Reinforced with 3-D Orthogonal Carbon Textile Preforms)

  • 이상관;변준형;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.188-191
    • /
    • 2002
  • 3-D orthogonal woven carbon/Al composites were fabricated using a pressure infiltration casting method. Especially, to minimize geometrical deformation of fiber pattern and $Al_4C_3$ formation, the process parameters of the minimum pressurizing force, melting temperature, delay and holding time of molten aluminum pressurizing was optimized through the PC-controlled monitoring system. Resonant ultrasound spectroscopy (RUS) was utilized to measure the effective elastic constants of 3-D orthogonal woven carbon/Al composites. The CTE measurement was conducted using strain gages in a heating oven.

  • PDF

다층 프리폼에서의 방사형 유동진행 (Radial Flow Advance in Multi-layered Preforms)

  • 신국승;송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.155-158
    • /
    • 2004
  • In resin transfer molding, the preform similar to product shape is placed into a mold cavity. Rapid flow front without void formation is important for the composites processing. Multi-layered preform of sandwich is selected. Experiments is carried out using redial flow. An analytical modeling is performed and compared with experimental results. Accurate prediction of flow advance in the preform is of use for reducing the time consumption in the process and enhancing product properties of the final part.

  • PDF

Braided 탄소섬유강화 알루미늄 기지 금속복합재료의 제조 및 기계적 특성평가 (Fabrication and Mechanical Characterization of Braided Carbon Fiber Reinforced Al Matrix Composites)

  • 김경태;이상관;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.131-134
    • /
    • 2002
  • Braided carbon fiber reinforced Al matrix composites were developed and characterized. Braided carbon fiber preforms with braiding angles of $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ were manufactured by using a braiding machine. The manufactured braided carbon fibers were used as reinforcement to fabricate Al matrix composites by employing a pressure infiltration casting method. In the processing of pressure infiltration casting, important processing parameters such as melting temperature, preheating temperature of preform and applied pressure were optimized. Prediction of elastic constants on composites was performed by using the volume averaging method, which utilizes the coordinate transformation and the averaging of stiffeness and compliance constants based upon the volume of each reinforcement and matrix material. The elastic moduli of composites were evaluated by using Resonant Ultrasound Spectroscopy(RUS) method and compared with the elastic moduli obtained from static tensile test method.

  • PDF

수지 이송 성형에서 투과율 계수의 수치적 계산 (Numerical Calculation of Permeability in Resin Transfer Molding)

  • Song, Young-Seok;Youn, Jae-Roun
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.83-86
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional preform such as plain woven fabric and braided preform is critical to understand the resin transfer molding process of composites. The permeability can be obtained by various methods such as analytic, numerical, and experimental methods. For several decades, the permeability has studied numerically to avoid practical difficulty of many experiments. However, the predicted permeabilities are a bit wrong compared with experimentally measured data. In this study, numerical calculation of permeability was conducted for two kinds of preforms i.e., plain woven fabric and circular braided preform. In order to consider intra-tow flow in the unit cell of preform the proposed flow coupled model was used for plain woven fabric and the Brinkman equation was solved in the case of the braided preform.

  • PDF

2D 및 3D 직조형 복합재료의 충격특성 (Impact Properties of 2D and 3D Textile Composites)

  • 변준형;엄문광;황병선;송승욱;강형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.91-94
    • /
    • 2003
  • Laminated composites are liable to fatal damage under impact load due to the fact that they have no reinforcement in the thickness direction. To overcome the inherent weakness, three dimensional (3D) textile reinforcements have drawn much interests. In this paper, impact performance of 2D and 3D textile composites has been characterized. For 2D composites, fiber bundle size and fiber pattern have been varied. For 3D composites, orthogonal woven preforms of different density and type of through-thickness fibers have been studied. To assess the damage after the impact loading, specimens were subjected to C-scan nondestuctive inspection. Compression after impact (CAI) were also conducted in order to evaluate residual compressive strength.

  • PDF