• Title/Summary/Keyword: Composite Layer

Search Result 1,604, Processing Time 0.031 seconds

Matrix Cracking and Delmaination in Laminated Composite Plates Due to Impact (적층복합판의 충격에 의한 모재균열 및 층간분리에 관한 연구)

  • Kim, Moon-Saeng;Park, Seung-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.317-326
    • /
    • 1997
  • An investigation was performed to study the matrix cracking and delamination in laminated composite plates due to transverse impact. A model was developed for predicting the initiation of the matrix cracking and the shape and size of impact-induced delamination in laminated composite plates resulting from the ballistic impact. The model consists of a stress analysis and a failure analysis. A transient finite element analysis which was based on the higher-order shear deformation theory was adopted for calculating the stresses inside the laminated composite plates during impact. A failure analysis was used to predict the initial intraply matrix cracking and the shape and size of the interface delamination in the laminates. As a results, a shear matrix cracking which was governed by the transverse interlaminar shear stress occured at the middle layer near the midplane of laminates and a bending matrix cracking which was governed by the transverse inplane stress occured at the bottom layer near the surface of laminates. In a thick laminates, a shear matrix cracking generated first at the middle layer of laminates, but in a thin laminates, a bending matrix cracking generated first at the bottom layer of laminates.

Active vibration control of smart composite structures in hygrothermal environment

  • Mahato, P.K.;Maiti, D.K.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • The composite materials may be exposed to environmental (thermal or hygral or both) condition during their service life. The effect of environmental condition is usually adverse from the point of view of design of composite structures. In the present research study the effect of hygrothermal condition on the design of laminated composite structures is investigated. The active fiber composite (AFC) which may be utilized as actuator or sensor is considered in the present analysis. The sensor layer is used to sense the level of response of the composite structures. The sensed voltage is fed back to the actuator through the controller. In this study both displacement and velocity feedback controllers are employed to reduce the response of the composite laminate within acceptable limit. The Newmark direct time integration scheme is employed along with modal superposition method to improve the computational efficiency. It is observed from the numerical study that the laminated composite structures become weak in the presence of hygrothermal load. The response of the structure can be brought to the acceptable level once the AFC layer is activated through the feedback loop.

Continuous and discontinuous contact problem for a layered composite resting on simple supports

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.17-34
    • /
    • 2001
  • The frictionless contact problem for a layered composite which consists of two elastic layers having different elastic constants and heights resting on two simple supports is considered. The external load is applied to the layered composite through a rigid stamp. For values of the resultant compressive force P acting on the stamp vertically which are less than a critical value $P_{cr}$ and for small flexibility of the layered composite, the continuous contact along the layer - the layer and the stamp - the layered composite is maintained. However, if the flexibility of the layered composite increases and if tensile tractions are not allowed on the interface, for P > $P_{cr}$, a separation may be occurred between the stamp and the layered composite or two elastic layers interface along a certain finite region. The problem is formulated and solved for both cases by using Theory of Elasticity and Integral Transform Technique. Numerical results for $P_{cr}$, separation initiation distance, contact stresses, distances determining the separation area, and the vertical displacement in the separation zone between two elastic layers are given.

Excellent Seam Weldable Nano-Composite Coated Zn-Ni Plating Steels for Automotive Fuel Tank

  • Jo, Du-Hwan;Yun, Sang-Man;Park, Kee-Cheol;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Steels for automotive fuel tank require unique properties such as corrosion resistance for fuel, welding for joining, forming for press, and painting for exterior. Recently, automakers have been requiring excellent seam weldable steels to enhance manufacturing productivity of fuel tank. Thus, POSCO developed a new type of functional steels coated with nano-composite thin layer on Zn-Ni plating steels. The nano-composite coating solution was prepared by mechanical fine dispersion of solutions consisting of polymeric resin and nano-composite materials in aqueous media. The composite solution was coated on the plating steel surface by using roll coater and cured through induction furnace. These new developed plating steels were evaluated for quality performances such as seam and spot weldability, press formability, and corrosion resistance. These new functional steels coated with nano-composite layer exhibited excellent seam weldability and press formability. Detailed discussion of coating solution and experimental results suggest that nano-sized composite dispersion as coating layer plays a key role in enhancing the quality performance.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

A Study on the Fabrication of Cast Iron-Babbitt Metal Composite Pipes by Centrifugal Casting Process (원심주조법에 의한 주철-Babbitt Metal 복합관 제조에 관한 연구)

  • Lee, Chung-Do;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.42-49
    • /
    • 1993
  • Conventional manufacturing process for cast iron-babbitt metal composite is complicate and bimetallic bonding by centrifugal casting is also difficult because their melting point is largely different and nonmetallic inclusion exists on outer shell. This study is aiming to simplify multistage process by adding Cu-powder as insert metals during cast iron solidification. The variables on fabrication of composite pipe are mold rotating speed and inner surface temperature of outer metal. The optimum temperature range for fusion bonding between cast iron and Cu-layer was $1100^{\circ}C-1140^{\circ}C$ in case of mold rotating speed was 700rpm. When the inner surface of Cu-layer was at $900^{\circ}C$, the value of interfacial hardness between Cu-layer and babbitt metal were higher than Cu-matrix by forming diffusion layer, interfacial products between Cu-layer and babbitt metal are proved to be $Cu_6Sn_5({\eta})$by XRD.

  • PDF

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.

A Boundary-layer Stress Analysis of Laminated Composite Beams via a Computational Asymptotic Method and Papkovich-Fadle Eigenvector (전산점근해석기법과 고유벡터를 이용한 복합재료 보의 경계층 응력 해석)

  • Sin-Ho Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • This paper utilizes computational asymptotic analysis to compute the boundary layer solution for composite beams and validates the findings through a comparison with ANSYS results. The boundary layer solution, presented as a sum of the interior solution and pure boundary layer effects, necessitates a mathematically rigorous formalization for both interior and boundary layer aspects. Computational asymptotic analysis emerges as a robust technique for addressing such problems. However, the challenge lies in connecting the boundary layer and interior solutions. In this study, we systematically separate the principles of virtual work and the principles of Saint-Venant to tackle internal and boundary layer issues. The boundary layer solution is articulated by calculating the Papkovich-Fadle eigenfunctions, representing them as linear combinations of real and imaginary vectors. To address warping functions in the interior solutions, we employed a least squares method. The computed solutions exhibit excellent agreement with 2D finite element analysis results, both quantitatively and qualitatively. This validates the effectiveness and accuracy of the proposed approach in capturing the behavior of composite beams.

Fabrication of WC-17%Co Composite Powder for Thermal Spray by Spray-Drying Method and HVOF Thermal Spray Characteristics (분무건조법에 의한 용사용 WC-17%Co 복합분말제조 및 HVOF(High Velocity Oxy-Fuel) 용사특성)

  • 설동욱;김병희;임영우;정민석;서동수
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.101-108
    • /
    • 1996
  • In this study, WC-l7wt% Co composite powder for thermal spray was fabricated by spray drying method. The agglomerated composite powder had spheroidal morphology and the particle size distribution was 20~60${\mu}{\textrm}{m}$. WC and Co were distributed homogeneously. However, the strength of the spray-dried agglomerate was low due to the pores within the agglomerate. Therefore, the spray-dried agglomerate was broken down during HVOF thermal spray and the microstructure was inhomogeneous with many pores within the coating layer. And the decomposition of WC to W and $W_{6}$ $C_{2.54}$ was accelerated. The strength and flowability of the agglomerate were greatly improved by sintering heat treatment(110$0^{\circ}C$, 1 hour, hi atmosphere), and then the coating layer showed dense and homogeneous microstructure with well-developed splats. The hardness of the coating layer was H $v_{300}$ = 1072.2.2.

  • PDF

A Study on Absorption Amount of Water-Repellency Processed Non-Woven Fabric in PVC Composite Waterproofing Sheet of A Multi-Layer Structure (다층막 구조형 PVC 복합방수시트 내 발수 처리된 부직포의 흡수량에 관한 연구)

  • An, Ki-Won;Heo, Neung-Hoe;Oh, Je-Gon;Go, Gun-Woong;Go, Jang-Ryeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.163-164
    • /
    • 2014
  • This study is conducted for prevent spread of penetration water and water leakage through non-woven fabric between PVC sheet and PVC sheet in the PVC composite waterproofing sheet of a multi-layer structure. For this, carry out absorption amount test to confirm spread resistance performance after manufacturing PVC composite waterproofing sheet of a multi-layer structure using water-repellency processed non-woven fabric. As a result of test, weight of water-repellency processed non-woven fabric increased to 1.178g, Compared with beginning and there are not penetration water.

  • PDF