• 제목/요약/키워드: Composite Laminate Plate

검색결과 131건 처리시간 0.025초

Stochastic failure analysis of [0/θ]s laminated composite plate containing edge crack and voids using XFEM

  • Ashok B. Magar;Achchhe Lal
    • Advances in materials Research
    • /
    • 제13권4호
    • /
    • pp.299-319
    • /
    • 2024
  • Due to higher strength-to-weight ratio of composite laminates, they find uses in many weight-sensitive applications like aerospace, automobile and marine structures. From a reliability point of view, accurate prediction of failure of these structures is important. Due to the complexities in the manufacturing processes of composite laminates, there is a variation in the material properties and geometric parameters. Hence stochastic aspects are important while designing the composite laminates. Many existing works of composite laminate failure analysis are based on the deterministic approach but it is important to consider the randomness in the material properties, geometry and loading to predict accurate failure loads. In this paper the statistics of the ultimate failure load of the [0/θ]s laminated composite plate (LCP) containing the edge crack and voids subjected to the tensile loading are presented in terms of the mean and coefficient of variance (COV). The objective is to better the efficacy of laminate failure by predicting the statistics of the ultimate failure load of LCP with random material, geometric and loading parameters. The stochastic analysis is done by using the extended finite element method (XFEM) combined with the second-order perturbation technique (SOPT). The ultimate failure load of the LCP is obtained by ply-by-ply failure analysis using the ply discount method combined with the Tsai-Wu failure criterion. The aim is to know the effect of the stacking sequence, crack length, crack angle, location of voids and number of voids on the mean and corresponding COV of the ultimate failure load of LCP is investigated. The results of the ultimate failure load obtained by the present method are in good agreement with the existing experimental and numerical results. It is observed that [0/θ]s LCPs are very sensitive to the randomness in the crack length, applied load, transverse tensile strength of the laminate and modulus of elasticity of the material, so precise control of these parameters is important. The novelty of the present study is, the stochastic implementation in XFEM for the failure prediction of LCPs containing crack and voids.

알루미늄 합금판재에 FRP 라미네이터를 보강한 APAL 및 CPAL 재의 균열전파속도 거동 (The Behavior of Crack Growth Rate for APAL and CPAL Patched with FRP Laminate in Aluminum Alloy Plate)

  • 윤한기;정해용;허정원
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1013-1022
    • /
    • 1995
  • A hybrid composite (APAL;Aramid Patched ALuminum alloy, CPAL;Carbon Patched ALluminum alloy), consisting of a Al 2024-T3 aluminum alloy plate sandwiched between two aramid/epoxy and carbon/epoxy laminate, was developed. Fatigue crack growth behavior was examined at stress ratios of R=0.2, 0.5. The APAL and CPAL showed superior fatigue crack growth resistance, which may be attributed to the crack bridging effect imposed by the intact fibers in the crack wake.

점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석 (Strength Estimation of Composite Joints Based on Progressive Failure Analysis)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

Stress analysis of a postbuckled laminated composite plate

  • Chai, Gin-Boay;Chou, Siaw Meng;Ho, Chee-Leong
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.377-386
    • /
    • 1999
  • The stress distribution in a symmetrically laminated composite plate subjected to in-plane compression are evaluated using finite element analysis. Six different finite element models are created for the study of stresses in the plate after buckling. Two finite element modelling approaches are adopted to obtain the stress distribution. The first approach starts with a full model of shell elements from which sub-models of solid elements are spin-off The second approach adopts a full model of solid elements at the beginning from which sub-models of solid elements are created. All sub-models have either 1-element thickness or 14-element thickness. Both techniques show high interlaminar direct and shear stresses at the free edges. The study also provides vital information of the distribution of all components of stresses along the unloaded edges in length direction and also in the thickness direction of the plate.

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates

  • Benhenni, Mohamed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Adim, Belkacem;Li, Yuming;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.119-136
    • /
    • 2018
  • In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.

모우드 해석법에 의한 CFRP PLATE의 동특성에 관한 연구 (A study on the dynamic characteristics of CFRP PLATE by modal analysis method)

  • 한응교;오재응;방태규
    • 오토저널
    • /
    • 제11권1호
    • /
    • pp.44-50
    • /
    • 1989
  • 본 논문에서는 모우드 해석법(Modal Analysis Method)을 이용하여 종래 재료에 비해 우 수한 기계적 성질을 갖는 복합재료에 대하여 동특성을 규명하고자 하였다. 재료로는 알루미늄 판(AL PLATE)과 탄소섬유강화 복합적층판(CFRP)을 비교하였으며, 그 결과 전체적인 진동레 벨이 AL PLATE 보다 CFRP PLATE가 낮았고 섬유방향이 고정단고 직각인 경우보다 평행인 경우가 낮음을 알았다. 또한 AL PLATE와 유사한 진동형을 나타내는 CFRP PLATE의 고유 진동모우드가 저주파수쪽으로 이동함을 알 수 있었다.

  • PDF

Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites

  • Zeverdejani, Mehran Karimi;Beni, Yaghoub Tadi
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.103-114
    • /
    • 2020
  • In this research, buckling and free vibration of rectangular polymeric laminate reinforced by graphene sheets are investigated. Various patterns are considered for augmentation of each laminate. Critical buckling load is evaluated for different parameters, including boundary conditions, reinforcement pattern, loading regime, and laminate geometric states. Furthermore, vibration analysis is investigated for square laminate. Elastic properties of the composite are calculated using a combination of both molecular dynamics (MD) and the rule of mixture (MR). Kinematics of the plate is approximated based on the first shear deformation theory (FSDT). The current analysis is performed based on the energy method. For the numerical investigation, Ritz method is applied, and for shape functions, Chebyshev polynomials are utilized. It is found that the number of layers is effective on the buckling load and natural frequency of laminates which made from non-uniform layers.

적층복합재료 T-빔 기반의 3차원 직조 프리폼 π-빔 개발 (Development of 3D Woven Preform π-beam based on T-beam Made of Laminated Composites)

  • 박건태;이동우;변준형;송정일
    • Composites Research
    • /
    • 제33권3호
    • /
    • pp.115-124
    • /
    • 2020
  • 적층복합재료, 특히 탄소섬유 복합재료는 금속에 비해 가벼우며 상대적으로 비강도 및 비강성이 뛰어나기 때문에 항공 우주 산업 및 자동차 산업 등과같이 광범위한 분야에서 사용되고 있다. 그러나, 적층 복합재료는 섬유의 배열이 모두 면내방향으로 배열되어있기 때문에 박리가 발생한다는 큰 단점이 있으며, 이는 적층복합재료의 응용분야를 제한한다. 본 연구에서는 먼저 π-빔과 평판이 결합된 형태의 적층복합재료 T-빔을 개발하고, 구조해석 및 기계적 물성평가를 통하여 설계변수를 최적화하였다. 이후 적층복합재료 T-빔의 설계변수를 3D 직조 프리폼에 동일하게 적용하여 T-빔을 개발하였으며, 적층구조에 비하여 향상된 기계적 강도를 달성할 수 있었다. 이러한 연구결과는 강도향상을 필요로 하는 기존의 적층복합재료 구조물에 적용 가능할 것으로 기대된다.

카울플레이트 적용을 통한 라미네이트 특성 평가 (Evaluation of Laminate Property using Caulplate Application)

  • 박동철;김윤해
    • Composites Research
    • /
    • 제29권5호
    • /
    • pp.231-235
    • /
    • 2016
  • 본 연구에서는 동일한 구조의 모자형 보강재를 이용하여 일체형 동시접착 구조의 보강패널시편을 제작하였다. 일반적인 동시접착 보강패널 시편과 탄소에폭시 복합재를 이용하여 제작된 카울플레이트(Caul Plate)를 적용한 동시접착 보강패널 시편의 2가지 형태 시편을 제작하였으며 일반 동시접착 보강패널 시편에서는 패널 상에서 보강재가 적용되지 않은 부위가 적용된 부위보다 더 두꺼운 패널 두께를 가지고 그 연결부위에는 0.61 mm 높이 및 3.29 mm 길이의 플라이웨이브 현상이 나타났다. 카울플레이트가 적용된 보강패널 시편에서는 보다 균일한 압력 전달로 인하여 0.22 mm 높이와 1.37 mm 길이의 완화된 웨이브 현상을 보이면서 약 50% 이상 개선된 결과를 얻을 수 있었다.

저속충격을 받는 Carbon/Epox 적층판의 손상 해석 (Failure Analysis on the Carbon/Epoxy Laminate Subjected to Low Velocity Impact)

  • 이호철;이영신;김재훈;전제춘
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.98-101
    • /
    • 2000
  • Recently, composite material which has much excellent mechanical characteristics has been applied in many industries. However, it has a brittle characteristic under impact condition and its invisible characteristics of the damaged area has been the motivation of many engineers investigation. The modified failure criterion is implemented to predict the failure behavior of the composite plate subjected to low velocity impact using commercial finite element analysis code, ABAQUS-Ver. 5.8. The new criterion is in good agreement with experimental results and can predict the failure behavior of the composite plate subjected to low velocity impact more accurately.

  • PDF