• Title/Summary/Keyword: Composite Joint

Search Result 699, Processing Time 0.025 seconds

Friction welding of multi-shape ABS based components with Nano Zno and Nano Sio2 as welding reinforcement

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • Due to the high usage of ABS in industries, such as aerospace, auto, recreational devices, boat, submarines, etc., the purpose of this project was to find a way to weld this material, which gives advantages, such as affordable, high speed, and good connection quality. In this experimental project, the friction welding method was applied with parameters such as numerical control (NC) machine with two different speeds and three cross-sections, including a flat surface, cone, and step. After the end of the welding process, samples were then applied for both tensile and bending tests of materials, and the results showed that, with increasing the machining velocity Considering of samples, the friction of the surface increased and then caused to increase in the surface temperature. Considering mentioned contents, the melting temperature of composite materials increased. This can give a chance to have a better combination of Nanomaterial to base melted materials. Thus, the result showed that, with increasing the weight percentage (wt %) of Nanomaterials contents, and machining velocity, the mechanical behavior of welded area for all three types of samples were just increased. This enhancement is due to the better melting process on the welded area of different Nano contents; also, the results showed that the shape of the welding area could play a significant role, and by changing the shape, the results also changed drastically.A better shape for the welding process was dedicated to the step surface.

A complete integrity assessment of welded connections under high and low cycle fatigue followed by fracture failure

  • Feng, Liuyang;Liu, Tianyao;Qian, Xudong;Chen, Cheng
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.465-481
    • /
    • 2022
  • This paper presents a comprehensive integrity assessment of welded structural components, including uniform high- and low-cycle fatigue assessment of welded plate joints and fatigue-induced fracture assessment of welded plate joints. This study reports a series of fatigue and fracture tests of welded plate joints under three-point bending. To unify the assessment protocol for high- and low-cycle fatigue of welded plate joints, this study develops a numerical damage assessment framework for both high- and low-cycle fatigue. The calibrated damage material parameters are validated through the smooth coupon specimens. The proposed damage-based fatigue assessment approach describes, with reasonable accuracy, the total fatigue life of welded plate joints under high- and low-cycle fatigue actions. Subsequently, the study performs a tearing assessment on the ductile crack extension of the fatigue-induced crack. The tearing assessment diagram derives from the load-deformation curve of a single-edge notched bend, SE(B) specimen and successfully predicts the load-crack extension relation for the reported welded plate joints during the stable tearing process.

Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower

  • Wu, Xiangguo;Zhang, Xuesen;Zhang, Qingtan;Zhang, Dong;Yang, Xiaojing;Qiu, Faqiang;Park, Suhyun;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.407-421
    • /
    • 2022
  • Prefabricated hybrid wind turbine towers (WTTs) are promising due to height increase. This study proposes the use of ultra-high performance concrete (UHPC) to develop a new type of WTT without the need to use reinforcement. It is demonstrated that the UHPC WTT structure without reinforcing bars could achieve performance similar to that of reinforced concrete WTTs. To simplify the design of WTT, a design approach for the calculation of stresses at the horizontal joints of a WTT is proposed. The stress distribution near the region of the horizontal joint of the WTT structure under normal operating conditions and different load actions is studied using the proposed approach, which is validated by the finite element method. A further parametric study shows that the degree of prestressing and the bending moment both significantly affect the principal stress. The shear-to-torsion ratio also shows a significant influence on the principal tensile stress.

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

Effects of Heel-raise-lower with Kinesio Taping of Triceps Surae on Spasticity and Balance Ability in Patients with Chronic Stroke (종아리근육 키네시오 테이핑을 병행한 발뒤꿈치 들기 훈련이 만성 뇌졸중 환자의 강직 및 균형능력에 미치는 영향)

  • Kyung-Hun Kim
    • PNF and Movement
    • /
    • v.21 no.2
    • /
    • pp.213-222
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effects of heel-raise-lower with Kinesio Taping (HKT) on spasticity and balance ability in patients with chronic strokes. Methods: The participants were divided randomly into the HKT group and heel-raise-lower with sham (control group), with 38 participants assigned to each group. Both groups received heel-raise-lower lifting 100 times, 5 times/week for 4 weeks. The HKT group applied Kinesio Taping to the calf muscles. The control group applied Kinesio Taping transversely to the ankle joint and tibialis anterior muscle. The composite spasticity score was used to evaluate the ankle plantar flexors. The center of pressure with the eyes open and closed and limited stability was measured using BioRescue equipment. Both groups evaluated spasticity and balance ability before the experiment and after 4 weeks. Statistical methods before and after working around spasticity and balance ability were independent t-tests. Results: After training, spasticity showed significant improvement in the HKT group and in the control group (p < 0.05). Similarly, balance ability was significantly more improved in the HKT group after 4 weeks of training compared to the control group (p < 0.05). Conclusion: We confirmed the effects of heel-raise-lower with Kinesio Taping (HKT) on spasticity and balance ability in patients with chronic strokes.

Effect of bolt preloading on rotational stiffness of stainless steel end-plate connections

  • Yuchen Song;Brian Uy
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.547-564
    • /
    • 2023
  • This study investigates the effect of bolt preloading on the rotational stiffness of stainless steel end-plate connections. An experimental programme incorporating 11 full-scale joint specimens are carried out comparing the behaviours of fully pre-tensioned (PT) and snug-tightened (ST) flush/extended end-plate connections, made of austenitic or lean duplex stainless steels. It is observed from the tests that the presence of bolt preloading leads to a significant increase in the rotational stiffness. A parallel finite element analysis (FEA) validated against the test results demonstrates that the geometric imperfection of end-plate has a strong influence on the moment-rotation response of preloaded end-plate connections, which is crucial to explain the observed "two-stage" behaviour of these connections. Based on the data obtained from the tests and FE parametric study, the performance of the Eurocode 3 predictive model is evaluated, which exhibits a significant deviation in predicting the rotational stiffness of stainless steel end-plate connections. A modified bi-linear model, which incorporates three key properties, is therefore proposed to enable a better prediction. Finally, the effect of bolt preloading is demonstrated at the system (structure) level considering the serviceability of semi-continuous stainless steel beams with end-plate connections.

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

Treatment of stage 3 giant cell tumor around the knee (슬관절 주위에 발생한 stage 3 거대세포종의 치료)

  • Bank, Won-Jong;Rhee, Seung-Koo;Kang, Yong-Koo;Kwon, Oh-Soo;Chung, Yang-Guk
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.9 no.1
    • /
    • pp.124-129
    • /
    • 2003
  • Purpose: To analyze the clinical outcome and radiological features after surgical treatment of stage III giant cell tumor around the knee. Materials and Methods: 21 patients with stage III giant cell tumor around the knee joint, who were operated at our institutes between March 1991 and February 2000, were selected for this study. The average follow-up was 5.7 years (range, 1~9 years). After thorough curettage using high speed burr, cryosurgery and cementing with polymethymethacrylate (PMMA) were performed in 11 patients. 7 patients were treated with PMMA cementing (4 patients) or bone grafting (3 patients) after curettage without cryosurgery. Reconstruction with prosthesis composite allograft and knee fusion with Huckstep nail were performed in 3 patients with huge defect and joint perforation. Results: Local recurrence developed in 1 out of 11 patients who was treated with curettage and cementing with cryosurgery (9.1%) and 3 out of 7 patients who underwent curettage and cementing without cryosurgery (28.6%). Joint space narrowing more than 3mm was noted in 1 patient (9.1%), who treated with cryosurgery and anther patient (14.5%) who treated without cryosurgery. There was no local recurrence in case of wide resection and reconstruction. Conclusion: Thorough curettage and PMMA cementing with cryosurgery as an adjuvant is thought to be effective modalities in the treatment of stage 3 giant cell tumors around the knee. Wide resection and reconstruction can be reserved mainly for the cases of stage 3 giant cell tumor with significant cortical destruction and marked joint destruction, and the cases of local recurrence with poor bone stock.

  • PDF

The Evaluation of Composite Dose using Deformable Image Registration in Adaptive Radiotherapy for Head and Neck Cancer (두경부 종양의 적응방사선치료시 변형영상정합을 이용한 합성선량 평가)

  • Hwang, Chul-Hwan;Ko, Seong-Jin;Kim, Chang-Soo;Kim, Jung-Hoon;Kim, Dong-Hyun;Choi, Seok-Yoon;Ye, Soo-Young;Kang, Se-Sik
    • Journal of radiological science and technology
    • /
    • v.36 no.3
    • /
    • pp.227-235
    • /
    • 2013
  • In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible($48.95{\pm}3.89$ vs $49.10{\pm}3.55$ Gy), oral cavity($36.93{\pm}4.03$ vs $38.97{\pm}5.08$ Gy), parotid gland($35.71{\pm}6.22$ vs $36.12{\pm}6.70$ Gy) and temporomandibular joint($18.41{\pm}9.60$ vs $20.13{\pm}10.42$ Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.