• 제목/요약/키워드: Composite Flywheel Rotor

검색결과 11건 처리시간 0.023초

플라이휠 에너지 저장 장치용 복합재 로터 개발 (Development of a Composite Rotor for Flywheel Energy Storage System)

  • 김명훈;한훈희;김재혁;김성종;하성규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.169-172
    • /
    • 2005
  • A flywheel system is an electromechanical energy storage device that stores energy by rotating a rotor. The rotating part, supported by magnetic bearings, consists of the metallic shaft, composite rims of fiber-reinforced materials, and a hub that connects the rotor to the shaft. The delamination in the fiber wound composite rotor often lowered the performance of the flywheel energy storage system. In this work, an advanced hybrid composite rotor with a split hub was designed to both overcome the delamination problem in composite rim and prevent separation between composite rim and metallic shaft within all range of rotational speed. It was analyzed using a three-dimensional finite clement method. In order to demonstrate the predominant perfom1ance of the hybrid composite rotor with a split hub, a high spin test was performed up to 40,000 rpm. Four radial strains and another four circumferential strains were measured using a wireless telemetry system. These measured strains were in excellent agreement with the FE analysis. Most importantly, the radial strains were reduced using the hybrid composite rotor with a split hub, and all of them were compressive. As a conclusion, a compressive pressure on the inner surface of the proposed flywheel rotor was achieved, and it can lower the radial stresses within the composite rotor, enhancing the performance of the flywheel rotor.

  • PDF

에너지 저장시스템용 복합재 플라이휠 로터의 설계 (Design of a Composite Flywheel Rotor for Energy Storage System)

  • 정희문;최상규;하성규
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1665-1674
    • /
    • 1995
  • An optimum design has been performed to maximize specific energy (SED) of composite flywheel rotor for energy storage system. The flywheel rotor is assumed to be an axisymmetric thick laminated shell with a plane strain state for structural analysis. For the structural analysis the centrifugal force is considered and the stiffness matrix equation was derived for each ring considering the interferences between the rings. The global stiffness matrix was derived by integrating the local stiffness matrix satisfying the conditions of force and displacement compatibilities. Displacements are then calculated from the global stiffness matrix and the stresses in each ring are also calculated. 3-D intra-laminar quadratic Tsai-Wu criterion is then used for the strength analysis. An optimum procedure is also developed to find the optimal interferences and lay up angle to maximize SED using the sensitivity analysis.

5 kWh 복합재 플라이휠 로터의 회전 시험 (Spin Test of 5 kWh Composite Flywheel Rotor)

  • 한훈희;하성규;김재혁
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3135-3140
    • /
    • 2010
  • 본 논문은 에서는 5 kWh 복합재 플라이휠 로터를 설계/제작 하고, 회전 시 복합재 로터에 발생되는 변형률 분포와 로터의 파손 속도를 측정하기 위해 회전 시험을 수행하였다. 회전 시험 시 블루투스 방식의 무선 통신시스템을 이용하여 복합재 로터의 반경방향과 원주방향의 변형률을 실시간으로 측정하였다. 측정된 로터 변형률과 미리 예측된 로터 변형률을 비교하여 초기 로터 설계를 검증하였다. 복합재 로터는 파손속도인 22,000 rpm보다 11 %낮은 19,499 rpm에서 파손 되었다. 파손은 축과 복합재 로터를 연결하는 허브에서 발생하였다. 본 논문은 일반적인 관점에서 로터의 성능을 검증하였고, 고속 회전하는 복합재 로터의 예상치 않은 파손 위험을 입증하였다. 플라이휠 에너지 저장 시스템 설계 시 복합재 로터 뿐 아니라 허브 설계에도 특별한 주의가 요구된다. 플라이휠 에너지 저장 시스템을 실시간으로 관찰하기 위해서, 특히 높은 원심력을 받는 동안에도 작동 될 수 있는 무선 통신 시스템 개발이 앞으로 선행 되어야 한다.

10 kWh급 플라이휠 에너지 저장 시스템 설계 및 제작 (Design and Construction of 10 kWh Class Flywheel Energy Storage System)

  • 정세용;한상철;한영희;박병준;배용채;이욱륜
    • Progress in Superconductivity
    • /
    • 제13권1호
    • /
    • pp.40-46
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 10 kWh class flywheel energy storage system (FESS) has been developed to evaluate the feasibility of a 35 kWh class SFES with a flywheel $I_p/I_t$ ratio larger than 1. The 10 kWh class FESS is composed of a main frame, a composite flywheel, active magnetic dampers (AMDs), a permanent magnet bearing, and a motor/generator. The flywheel of the FESS rotates at a very high speed to store energy, while being levitated by a permanent magnetic bearing and a pair of thrust AMDs. The 10 kWh class flywheel is mainly composed of a composite rotor assembly, where most of the energy is stored, two radial and two thrust AMD rotors, which dissipate vibration at critical speeds, a permanent magnet rotor, which supports most of the flywheel weight, a motor rotor, which spins the flywheel, and a central hollow shaft, where the parts are assembled and aligned to. The stators of each of the main components are assembled on to housings, which are assembled and aligned to the main frame. Many factors have been considered while designing each part of the flywheel, stator and frame. In this study, a 10 kWh class flywheel energy storage system has been designed and constructed for test operation.

하이브리드 복합재 플라이휠 로터에 작용하는 내압의 효과 (Effect of the Inner Pressure on a Hybrid Composite Flywheel Retor)

  • 오제훈;한상철;김명훈;하성규
    • Composites Research
    • /
    • 제18권1호
    • /
    • pp.45-54
    • /
    • 2005
  • 필라멘트 와인딩 공정으로 제작된 고속 회전용 복합재 플라이휠 로터는 층간분리 현상에 의해 에너지 저장용량이 저하된다. 그리고 기존의 링 타입 허브는 복합재 로터 내측면에 인장력을 가하게 되고. 이는 로터내의 반경방향 인장응력을 가중시켜 로터의 한계 회전수를 저하시킨다. 복합재 로터의 응력해석을 위해서 2차원 평형방정식과 경계조건이 사용되었고, 이를 근거로 강도비를 최소화시키는 최적의 내압이 존재함을 수치적으로 제시하였다. 이러한 최적의 내압을 발생시키기 위해서 원주방향으로 분할된 스플릿 타입 허브를 제안하고, 링 타입과 스플릿 타입 허브의 두께변화에 따른 내압분포의 영향을 제시하였다. 스플릿 타입 허브의 유효성을 검증하기 위해 허브를 포함한 복합재 로터를 제작한 다음, 최대 회전수 40,000rpm까지 파손 없이 스핀 테스트를 수행하였다. 동시에 로터 표면에 4개의 원주방향 및 반경방향 스트레인게이지를 부착하여 변형률을 무선으로 측정하였다. 측정된 변형률은 해석결과와 매우 잘 일치하였다. 특히 반경방향의 응력을 크게 낮출 수 있었고, 반경방향으로 모두 압축 변형률이 발생함을 확인하였다. 결국 스플릿 타입 허브는 플라이휠 로터의 단점인 반경방향의 낮은 강도를 보안하는 효과를 나타내어, 저장에너지 밀도를 증가시킴으로써 대형 고출력 플라이횔 에너지 저장 시스템의 개발 가능성을 제시하였다.

플라이휠 에너지 저장장치 회전체계의 동역학적 설계및 해석 (Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device)

  • 최상규;김영철;경진호
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.81-86
    • /
    • 1998
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness if 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favirable for smooth operation of the system around the 2nd critical speed.

  • PDF

플라이휠 에너지 저장장치의 진동 제어 성능 평가 (Vibration Control of Flywheel Energy Storage System)

  • 이정필;한상철;박병철;한영희;박병준;정세용
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1750-1756
    • /
    • 2009
  • In this paper, 5 kWh class Superconductor Flywheel Energy Storage System (SFES) was constructed including motor/generator, superconductor magnetic bearing(SMB), composite rotor and electromagnetic damper(EMD) system. High speed rotation test was performed after levitating flywheel rotor only using EMD without SMB. the PD controller of EMD was designed. the control system is constructed using xPC which is real time digital control system. the results of high speed rotation test showed that proposed EMD system have sufficient damping in cylindrical mode and conical mode, and vibration of wheel was suppressed below 10 ${\mu}m$.

Precise Braking Torque Control for Momentum Flywheels Based on a Singular Perturbation Analysis

  • Zhou, Xinxiu;Su, Dan
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.953-962
    • /
    • 2017
  • Momentum flywheels are widely applied for the generation of small and precise torque for the attitude control and inertial stabilization of satellites and space stations. Due to its inherited system nonlinearity, the tracking performance of the flywheel torque/speed in dynamic/plug braking operations is limited when a conventional controller is employed. To take advantage of the well-separated two-time-scale quantities of a flywheel driving system, the singular perturbation technique is adopted to improve the torque tracking performance. In addition, the composite control law, which combines slow- and fast- dynamic portions, is derived for flywheel driving systems. Furthermore, a novel control strategy for plug braking dynamics, which considers couplings between the Buck converter and the three-phase inverter load, is designed with easy implementation. Finally, experimental results are presented to demonstrate the correctness of the analysis and the superiority of the proposed methods.

플라이휠 에너지 저장시스템의 회전 설계 (Rotational Design of the Superconductor Flywheel Energy Storage System)

  • 낭긍현;최효상;성태현;한영희;이정필;한상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.907-908
    • /
    • 2006
  • The energy storage systems are being widely researched for the electric power. The operations running in a vacuum chamber mainly consists of a composite flywheel rotor, superconductor bearings, a motor/generator and its controller. Among composed the apparatus, the floating magnet bearing consists of the ring-type permanent magnets with epoxy resin impregnation for reinforcement and surface protection. In order to storage as much energy as possible, the flywheel is supposed to be rotated with very high speed. The magnetic field is analyzed by using the Maxwell 2D/3D for the simulations.

  • PDF

초전도베어링을 이용한 300 Wh급 플라이휠 에너지저장장치의 고속운전시험 (High Speed Operating Test of a 300Wh Flywheel Energy Storage System Using Superconductor Bearings)

  • 김영철;최상규;성태현;이준성;한영희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.514-520
    • /
    • 2001
  • A 300Wh class flywheel energy storage system using high Tc superconductor bearings(HTC SFES) is being developed by KIMM and KEPRI. HTC SFES consists of a flywheel rotor, superconductor bearings, a motor/generator and its controller, touch-down bearings, vacuum chamber, etc. Stiffness and damping values of superconductor bearings were experimentally estimated to be 67,700N/m and 29Ns/m respectively. The present HTC SFES was designed to have maximum operating speed of 33000 rpm, which is far above 2 rigid body mode critical speeds of 645rpm and 1,275rpm. Leaf-spring type touch-down bearing were utilized to have the system pass safely through the system critical speeds. It has been experimentally verified that the system can run stably up to 28,000 rpm so that HTC SFES is now expected to reach up to its maximum design speed of 33,000rpm without any difficulties. The Halbach array motor & generator has also been proven its effectiveness on transferring electrical energy to a rotaing composite flywheel in kinetic form.

  • PDF