• Title/Summary/Keyword: Composite Fatigue analysis

Search Result 191, Processing Time 0.02 seconds

Reduction of residual stress for welded joint using vibrational load

  • Aoki, Shigeru;Nishimura, Tadashi;Hiroi, Tetsumaro
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.355-365
    • /
    • 2004
  • A new reduction method of residual stress in welding joint is proposed where welded metals are shaken during welding. By an experiment using a small shaker, it can be shown that tensile residual stress near the bead is significantly reduced. Since tensile residual stress on the surface degrades fatigue strength for cumulative damage, the proposed method is effective to reduction of residual stress of welded joints. The effectiveness of the proposed method is demonstrated by the response analysis using one mass model with nonlinear springs.

Fatigue Analysis of Composite Materials (복합재료의 피로해석)

  • 이창수;황운봉
    • Journal of the KSME
    • /
    • v.34 no.5
    • /
    • pp.372-383
    • /
    • 1994
  • 복합재료의 피로특성과 해석방법에 대하여 간략하게 살펴보았다. 복합재료의 피로현상에 대한 이해의 폭이 넓어짐에 따라 앞에서 소개한 방법외에 파단모드별 연구, 역학에 기초를 둔 해석법, 유한요소법의 적용, 혼성복합재료(hybrid composites)의 피로수명 예측 등의 다양한 연구가 진 행중이나, 아직 정립된 피로수명 예측식은 없다고 말할 수 있다. 재료의 손상을 나타내는 매개 변수로서 강성변화의 유용성이 밝혀진 상태이므로 앞으로 이를 이용하여 실제의 현상을 표현할 수 있는 손상함수의 구성과 피로수명 예측에 관한 연구가 수행되어야 한다.

  • PDF

Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner (금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Jeung, Sang-Su;Chung, Jae-Han
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on the liner to improve cycling life can be applied. In this study, a finite element analysis technique is presented, which can predict accurately the compressive residual stress on the liner induced by autofrettage and stress behavior after. Material and geometrical non-linearity is considered in the finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

Fibre composite railway sleeper design by using FE approach and optimization techniques

  • Awad, Ziad K.;Yusaf, Talal
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.231-242
    • /
    • 2012
  • This research work aims to develop an optimal design using Finite Element (FE) and Genetic Algorithm (GA) methods to replace the traditional concrete and timber material by a Synthetic Polyurethane fibre glass composite material in railway sleepers. The conventional timber railway sleeper technology is associated with several technical problems related to its durability and ability to resist cutting and abrading action of the bearing plate. The use of pre-stress concrete sleeper in railway industry has many disadvantages related to the concrete material behaviour to resist dynamic stress that may lead to a significant mechanical damage with feasible fissures and cracks. Scientific researchers have recently developed a new composite material such as Glass Fibre Reinforced Polyurethane (GFRP) foam to replace the conventional one. The mechanical properties of these materials are reliable enough to help solving structural problems such as durability, light weight, long life span (50-60 years), less water absorption, provide electric insulation, excellent resistance of fatigue and ability to recycle. This paper suggests appropriate sleeper design to reduce the volume of the material. The design optimization shows that the sleeper length is more sensitive to the loading type than the other parameters.

Aerodynamic and Structural Design of A High Efficiency Small Scale Composite Vertical Axis Wind Turbine Blade (복합재가 적용된 고효율 소형 수직축 풍력터빈 블레이드의 공력 설계 및 구조 설계에 관한 연구)

  • Gong, Chang-Duk;Lee, Ha-Seung;Kim, In-Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.758-765
    • /
    • 2011
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class blade design of vertical axis wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. For this wind turbine a high efficiency and low noise turbine blade was designed with the proposing aerodynamic design procedure, and a light composite structure blade. Structural analyses were performed using the Finite Element Method and fatigue life of the designed blade is estimated. Finally, in order to check its performance, the manufactured blade was tested by using truck and the results of test was good with respect to its analysis result.

Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model

  • Erfani, Saeed;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.913-930
    • /
    • 2016
  • It is common practice to use Reduced Web Beam Sections (RWBS) in steel moment resisting frames. Perforation of beam web in these members may cause stress and strain concentration around the opening area and facilitate ductile fracture under cyclic loading. This paper presents a numerical study on the cyclic fracture of these structural components. The considered connections are configured as T-shaped assemblies with beams of elongated circular perforations. The failure of specimens under Ultra Low Cycle Fatigue (ULCF) condition is simulated using Cyclic Void Growth Model (CVGM) which is a micromechanics based fracture model. In each model, CVGM fracture index is calculated based on the stress and strain time histories and then models with different opening configurations are compared based on the calculated fracture index. In addition to the global models, sub-models with refined mesh are used to evaluate fracture index around the beam to column weldment. Modeling techniques are validated using data from previous experiments. Results show that as the perforation size increases, opening corners experience greater fracture index. This is while as the opening size increases the maximum observed fracture index at the connection welds decreases. However, the initiation of fracture at connection welds occurs at lower drift angles compared to opening corners. Finally, a probabilistic framework is applied to CVGM in order to account for the uncertainties existing in the prediction of ductile fracture and results are discussed.

Tensile response of steel/CFRP adhesive bonds for the rehabilitation of civil structures

  • Matta, F.;Karbhari, Vistasp M.;Vitaliani, Renato
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.589-608
    • /
    • 2005
  • There is a growing need for the development and implementation of new methods for the rapid and cost-effective rehabilitation of deteriorating steel structural components to offset the drawbacks related to welding and/or bolting in the field. Carbon fiber reinforced polymer (CFRP) composites provide a potential alternative as externally bonded patches for strengthening and repair of metallic structural members for building and bridge systems. This paper describes results of an investigation of tensile and fatigue response of steel/CFRP joints simulating scenarios of strengthening and crack-patching. It is shown that appropriately designed schemes, even when fabricated with levels of inaccuracy as could be expected in the field, can provide significant strain relief and load transfer capability. A simplified elasto-plastic closed form solution for stress analysis is presented, and validated experimentally. It is shown that the bond development length remains constant in the linear range, whereas it increases as the adhesive is deformed plastically. Fatigue resistance is shown to be at least comparable with the requirements for welded cover plates without attendant decreases in stiffness and strength.

Investigating the fatigue failure characteristics of A283 Grade C steel using magnetic flux detection

  • Arifin, A.;Jusoh, W.Z.W.;Abdullah, S.;Jamaluddin, N.;Ariffin, A.K.
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.601-614
    • /
    • 2015
  • The Metal Magnetic Memory (MMM) method is a non-destructive testing method based on an analysis of the self-magnetic leakage field distribution on the surface of a component. It is used for determining the stress concentration zones or any irregularities on the surface or inside the components fabricated from ferrous-based materials. Thus, this paper presents the MMM signal behaviour due to the application of fatigue loading. A series of MMM data measurements were performed to obtain the magnetic leakage signal characteristics at the elastic, pre-crack and crack propagation regions that might be caused by residual stresses when cyclic loadings were applied onto the A283 Grade C steel specimens. It was found that the MMM method was able to detect the defects that occurred in the specimens. In addition, a justification of the Self Magnetic Flux Leakage patterns is discussed for demonstrating the effectiveness of this method in assessing the A283 Grade C steel under cyclic loadings.

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

Evaluation of Fatigue Damage of Metal Matrix Composite by LFB Acoustic Microscopy (Line-Focus-Beam 초음파 현미경을 이용한 금속복합재료의 피로손상에 관한 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • Composites composed of a precipitation harden 2124 alloy matrix reinforced by SiC whiskers, which are fabricated by powder metallugy, are suscepttible to fatigue damage due to the pile-up of moving dislocation and the microcrack initiation along SiC-Al interfaces, especially at the external surfaces of a body. The initial process, such as pile-up of dislocation or microcrack, that corresponds to the stage I during fatigue failure process are too small to be detected and characterized by conventional ultrasonic technique. This paper describes the applicability of an acoustic microscope with Line-Focus-Beam(LFB) lens of 225MHz to evaluate fatigue damage of SiC whiskers reinforced Al alloy. The specimens which were 6.6mm thick, 13mm wide, and 105mm long in the gage section were fatigued in tension-tension under load control. The velocity of leaky surface and leaky pseudosurface acoustic waves are obtained by FFT analysis technique from V(z) curve which is a record of output of piezoelectric transducer. These results are discussed with the change of number of fatigue cycles. The result obtained by acoustic microscope is compared with that by ultrasonic technique generated at 5MHz with conventional surface wave transducers.

  • PDF