• 제목/요약/키워드: Composite Failure Theory

검색결과 114건 처리시간 0.019초

관 구조물 파괴에서의 크기효과 (Size Effect in Failure of Tube Structure)

  • Kim, Duk-Hyun;Kim, Doo-Hwan;Kwak, Jin-Sung
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.101-104
    • /
    • 2002
  • Almost all buildings/infrastructures made of composite materials are fabricated without proper design. Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100-meter long bridges. People try to build 100-story buildings or several thousand meter long bridges. In order to realize "composites in construction", the following subjects must be studied in detail, for his design. Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency. Unlike the design procedure with conventional materials, his design should include material design, selection of manufacturing methods, and quality control methods, in addition to the fabrication method. In this paper size/scale effects in failure criteria is briefly explained for practicing engineers.engineers.

  • PDF

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

단순화된 Mark III 방열판의 구조 강도 평가에 관한 연구 (Structural Strength Assessment of Simplified Mark III CS Plate)

  • 정한구;양영순
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.539-543
    • /
    • 2011
  • LNG cargo containment system (CCS) has the primary function of ensuring adequate thermal insulation with keeping natural gas below its boiling point. From the viewpoint of structural design, this LNG CCS can be treated as a laminated composite structure showing complex structural responses under the sloshing load which can be defined as a violent behavior of the liquid contents in cargo tanks due to external forced motions. As LNG CCS type, Mark III containment system from TGZ is considered in this paper and then its structural strength assessment is performed based on a simple higher-order shear deformation theory and maximum stress, maximum strain, Tsai-Wu failure criteria developed for laminated composite plates. The assessment is performed to the initial failure of the Mark III CS plate by investigating failure locations and loads.

  • PDF

복합재료 적층판 기계적 체결부 파손시험 및 점진적 파손해석에 대한 연구 (A Study for Failure Test and Progressive Failure Analysis on Composite Laminates Mechanical Joint)

  • 권정식;김진성;양용만;이수용
    • 한국항공우주학회지
    • /
    • 제45권1호
    • /
    • pp.21-29
    • /
    • 2017
  • 복합재료 적층판 기계적 체결부(ASTM D5961 Proc. A, B)에 대하여 치구 설계에서 시험 결과의 해석까지 전체 과정을 제시하였다. 복합재료 적층판 기계적 체결부를 유한요소법을 사용하여 분석하였으며 시험 결과와 비교하였다. 시험편의 파손 거동을 분석하기 위해 점진적 파손해석 방법을 유한요소법에 적용하였다. 시험 파손 하중을 예측하기 위해 3가지 파손이론(최대 응력, 최대 변형률, Tsai-Wu)을 FEM에 적용하였다. 기계적 체결부의 일반적인 변수들을 검토하였으며 주요 변수에 대하여 베어링 강도 차이를 비교하였다.

복합적층 회전원판의 응력 및 진동 해석 (Stress and Vibration Analysis of Rotating Laminated Composite Disks)

  • 구교남
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.982-989
    • /
    • 2006
  • The centrifugal force acting on a rotating disk creates the in-plane loads in radial and circumferential directions. Application of fiber reinforced composite materials to the rotating disk can satisfy the demand for the increment of its rotating speed. However, the existing researches have been confined to lamina disks. This paper deals with the stress and vibration analysis of rotating laminated composite disks. The maximum strain theory for failure criterion is applied to determine the strength of the laminate disk from which the maximum allowable speed is obtained. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating laminated disks. The Galerkin method is applied to obtain the series solution. The numerical results are given for the cross-ply laminated composite disks.

Stability and failure of symmetrically laminated plates

  • Chai, Gin Boay;Hoon, Kay Hiang;Chin, Sin Sheng;Soh, Ai Kah
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.485-496
    • /
    • 1996
  • This paper describes a numerical and experimental study on the stability and failure behaviour of rectangular symmetric laminated composite plates. The plates are simply supported along the unloaded edges and clamped along the loaded ends, and they are subjected to uniaxial in-plane compression. The finite element method was employed for the theoretical study. The study examines the effect of the plate's stacking sequence and aspect ratio on the stability and failure response of rectangular symmetric laminated carbon fibre reinforced plastics composite plates. The study also includes the effect of the unloaded edge support conditions on the postbuckling response and failure of the plates. Extensive experimental investigation were also carried out to supplement the finite element study. A comprehensive comparison between theory and experimental data are presented and discussed in this contribution.

An approach for failure analysis of composite bridge deck systems with openings

  • Zhao, Lei;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • 제20권1호
    • /
    • pp.123-141
    • /
    • 2005
  • Design details pertaining to the connection between some recently developed fiber reinforced polymer (FRP) composite deck systems and the supporting girders require openings through cells of the deck. This significantly changes the stress distribution in these components. As a result, the conventional assumptions that deck designs are controlled by their stiffness, and not strength, needs a closer examination. This paper proposes an analytical method to investigate the stress states and failure mechanisms using a type of "global-local" modeling perspective, incorporating classical lamination theory and first ply failure criterion with use of appropriate stress concentration factors around the cutouts. The use of a "smeared-stress" approach is presented as a potential means of simplifying certain FRP specific complexities, while still enabling prediction of overall failure.

Analysis of the adhesive damage between composite and metallic adherends: Application to the repair of aircraft structures

  • Ibrahim, Nour Chafak;Bouanani, Morad Fari;Bouiadjra, Bel Abbes Bachir;Serier, Boualem
    • Advances in materials Research
    • /
    • 제5권1호
    • /
    • pp.11-20
    • /
    • 2016
  • In bonded composite repair of aircraft structures, the damage of the adhesive can thus reduce significantly the efficiency and the durability of the bonded composite repair. The adhesive damage models using critical zone have proven their effectiveness due to simplicity and ap-plicability of the damage criteria in these models. The scope of this study is to analyze the effects of the patch thickness and the adhesive thickness on the damage damage in bonded composite repair of aircraft structures by using modified damage zone theory. The obtained results show that, when the thickness of adhesive increases the damage zone increases and the adhesive loses its rigidity, inversely when the patch is reduced the adhesive damage be-comes more significant.

Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory

  • Ghannadpour, S.A.M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.245-259
    • /
    • 2019
  • The present study aims to investigate the ultimate strength and geometric nonlinear behavior of composite plates containing initial imperfection subjected to combined end-shortening strain and lateral pressure loading by using a semi-analytical method. In this study, the first order shear deformation plate theory is considered with the assumption of large deflections. Regarding in-plane boundary conditions, two adjacent edges of the laminates are completely held while the two others can move straightly. The formulations are based on the concept of the principle of minimum potential energy and Newton-Raphson technique is employed to solve the nonlinear set of algebraic equations. In addition, Hashin failure criteria are selected to predict the failures. Further, two distinct models are assumed to reduce the mechanical properties of the failure location, complete ply degradation model, and ply region degradation model. Degrading the material properties is assumed to be instantaneous. Finally, laminates having a wide range of thicknesses and initial geometric imperfections with different intensities of pressure load are analyzed and discuss how the ultimate strength of the plates changes.

저속 충격시 고차이론을 이용한 복합재료 판의 동적 특성 (Dynamic Charateristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact)

  • 심동진;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.42-48
    • /
    • 1997
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higher order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. The results compared with previous investigations showed good agreement. The effect of ply sequence and ply angle on the contact force is also studied.

  • PDF