• Title/Summary/Keyword: Composite Failure Theory

Search Result 114, Processing Time 0.021 seconds

Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory

  • Keshtegar, Behrooz;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.195-207
    • /
    • 2018
  • First-order reliability method (FORM) is enhanced based on the search direction using relaxed conjugate reliability (RCR) approach for the embedded nanocomposite beam under buckling failure mode. The RCR method is formulated using discrete conjugate map with a limited scalar factor. A dynamical relaxed factor is proposed to control instability of proposed RCR, which is adjusted using sufficient descent condition. The characteristic of equivalent materials for nanocomposite beam are obtained by micro-electro-mechanical model. The probabilistic model of nanocomposite beam is simulated using the sinusoidal shear deformation theory (SSDT). The beam is subjected to external applied voltage in thickness direction and the surrounding elastic medium is modeled by Pasternak foundation. The governing equations are derived in terms of energy method and Hamilton's principal. Using exact solution, the implicit buckling limit state function of nanocomposite beam is proposed, which is involved various random variables including thickness of beam, length of beam, spring constant of foundation, shear constant of foundation, applied voltage, and volume fraction of ZnO nanoparticles in polymer. The robustness, accuracy and efficiency of proposed RCR method are evaluated for this engineering structural reliability problem. The results demonstrate that proposed RCR method is more accurate and robust than the excising reliability methods-based FORM. The volume fraction of ZnO nanoparticles and the applied voltage are the sensitive variables on the reliable levels of the nanocomposite beams.

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.

Impact Damage of CFRP Laminated Composites Subjected to Impact Loading (충격하중을 받는 CFRP 적층복합재의 충격손상에 관한 연구)

  • M.S. KiM;Park, S.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.116-125
    • /
    • 1997
  • An investigation was performed to study the impact damage in CFRP laminated composites subjected to impact loading. A finite element model has been developed for predicting the impact damage in laminated composite plates resulting from the ballistic impact. The finite element model was based on the higher-order shear deformation theory and was used to predict the initial intraply matrix cracking and the shape and size of interface delamination in laminated composites. Numerical simulation was performed and then the initiation of the matrix cracking and the shape and size of impacted induced delamination were predicted, and te results were compared with those of impact experiments with the same dimension and stacking sequences. A linear relationship holds between impact velocity and length and width of delamination. As impact velocity is increased, the increase of delamination length is highger than the increase of delamination width.

  • PDF

Evaluation of Structural Behavior of Precast-Concrete Column and H-Beam using Non-linear Finite Element Analysis (비선형 유한요소해석을 이용한 PC 기둥-H 형강보의 구조거동 분석)

  • Park Jeong-sim;Park Soon-kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.425-428
    • /
    • 2004
  • Nonlinear finite element analysis is conducted to predict the structural behavior of precast concrete column and steel beam connected by using bolted connections. The Nonlinear FEM program is based on the modified compression field theory which has good accuracy in the concrete structures. The link element is properly used to model the discontinuity between precast concrete column and steel beam. Predictions from the proposed model are compared with experimental results and it is concluded that structural behaviors of the composite structures, such as strength capacity, crack pattern and failure mode, can be predicted quite successfully.

  • PDF

Correlation Between Mechanical Behavior and Electrical Resistance Change in Carbon Particle Dispersed Plastic Composite

  • Song, D.Y.;Takeda, N.;Kim, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.377-382
    • /
    • 2001
  • Mechanical behavior and electrical resistance change of CPDP (carbon particle dispersed plastic) composite consisting of epoxy resin and conductive carbon particle were investigated under monotonic loading and repeated loading-unloading. The electrical resistance almost linearly increased with increasing strain during loading and the residual electrical resistance was observed even after removing load. The value of the residual electrical resistance was dependent on the maximum strain under the applied stress. This result suggests that the estimation of maximum strain (i.e., damage) is possible by the measuring electrical resistance of composite. The behavior of electrical resistance change during and after loading was discussed on the basis of the results of microscopic deformation and fracture observation. Moreover, the relationship between the volume fraction of carbon particle and the electrical resistivity of CPDP was investigated in relation to the percolation theory. Simulation model of percolation structure was established by Monte Carlo method and the simulation result was compared to the experimental results. The electrical resistance change under applied loading was analyzed quantitatively using the percolation equation and a simple model for the critical volume fraction of carbon particle as a function of the mechanical stress. It was revealed that the prediction was in good agreement with the experimental result except in the region near the failure of material.

  • PDF

Acoustic Loads Reduction of Composite Plates for Nose Fairing Structure (노즈 페어링 구조용 복합재 평판의 음향 하중 저감 특성)

  • 박순홍;공철원;장영순;이영무
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.15-22
    • /
    • 2004
  • Acoustic load generated by rocket propulsion system is one of major dynamic loads during lift-off phase so that it causes the structural failure and electronic malfunction of payloads. Acoustic loads can be greatly reduced by an appropriate acoustical design of nose faring structures. This paper deals with the acoustical design of the nose fairing structure for launch vehicle. It is well known that a honeycomb sandwich structure is a poor sound insulator because of its high specific stiffness. In this paper, the sound transmission characteristics of four kinds of honeycomb structures for noise fairing were investigated by means of numerical and experimental ways. In order to estimate transmission loss, infinite plate theory by Moore and Lyon and statistical energy analysis (SEA) method were used. The predicted results showed a good agreement with measured ones. These enabled us to determine a proper core material for nose fairing, which shows good sound insulation performance per weight.

Stacking Sequence Design of Fiber-Metal Laminate Composites for Maximum Strength (강도를 고려한 섬유-금속 적층 복합재료의 최적설계)

  • 남현욱;박지훈;황운봉;김광수;한경섭
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.42-54
    • /
    • 1999
  • FMLC(Fiber-Metal Laminate Composites) is a new structural material combining thin metal laminate with adhesive fiber prepreg, it nearly include all the advantage of metallic materials, for example: good plasticity, impact resistance, processibility, light weight and excellent fatigue properties. This research studied the optimum design of the FMLC subject to various loading conditions using genetic algorithm. The finite element method based on the shear deformation theory was used for the analysis of FMLC. Tasi-Hill failure criterion and Miser yield criterion were taken as fitness functions of the fiber prepreg and the metal laminate, respectively. The design variables were fiber orientation angles. In genetic algorithm, the tournament selection and the uniform crossover method were used. The elitist model was also used to be effective evolution strategy and the creeping random search method was adopted in order to approach a solution with high accuracy. Optimization results were given for various loading conditions and compared with CFRP(Carbon Fiber Reinforced Plastic). The results show that the FMLC is more excellent than the CFRP in point and uniform loading conditions and it is more stable to unexpected loading because the deviation of failure index is smaller than that of CFRP.

  • PDF

An Experimental Evaluation of Mechanical Properties and Failure Processing in Composite Laminate (복합재료의 기계적 성질 및 파손과정 평가)

  • J.W.,Ong;K.H.,Song;R.W.,Sung;B.S.,Shim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.58-68
    • /
    • 1988
  • This paper is concerned with mechanical properties of unidirectional laminate $[(0^{\circ})_{8T},\;(90^{\circ})_{8T}]$, composed of angle plies $[({\pm}15^{\circ})_{2S},\;({\pm}30^{\circ})_{2S},\;({\pm}45^{\circ})_{2S},\;({\pm}60^{\circ})_{2S},\;({\pm}75^{\circ})_{2S}$ and laminate $[(9^{\circ}/90^{\circ})_{2S},\;(90^{\circ}/{\pm}45^{\circ}/0^{\circ})_S,\;({\pm}45^{\circ}/0^{\circ}/{\pm}90^{\circ})_S,\;({\pm}45^{\circ}/90^{\circ}/0^{\circ})_S,\;(0^{\circ}/90^{\circ}/{\pm}45^{\circ})_S,\;(90^{\circ}/0^{\circ}/{\pm}45^{\circ})_S]$ under the condition of uniform strain tension. Also, experimental investigation was conducted $[10]_{8T}$, off-axis tensile test for intralaminar shear characterization. The experimental data on the failure criterion of tensor polynomial were compared with those from the classical laminate theory. Acoustic Emission experiments have been carried out to investigate the changes of the amplitude distributions of Acoustic Emission monitored during failure of tensile tests on Carbon/Epoxy composites.

  • PDF

Experimental and numerical study on mechanical behaviour of grouted splices with light-weight sleeves

  • Quanwei Liu;Tao Wu;Zhengyi Kong;Xi Liu;Ran Chen;Kangxiang Hu;Tengfei Xiang;Yingkang Zhou
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.165-182
    • /
    • 2024
  • Grouted sleeve splice (GSS) is an effective type of connection applied in the precast concrete structures as it has the advantages of rapidly assembly and reliable strength. To decrease the weight and cost of vertical rebar connection in precast shear walls, a light-weight sleeve is designed according to the thick-cylinder theory. Mechanical behaviour of the light-weighted GSS is investigated through experimental analysis. Two failure modes, such as rebar fracture failure and rebar pull-out failure, are found. The load-displacement curves exhibit four different stages: elastic stage, yield stage, strengthening stage, and necking stage. The bond strength between the rebar and the grout increases gradually from outer position to inner position of the sleeve, and it reaches the maximum value at the centre of the anchorage length. A finite element model predicting the mechanical properties of the light-weighted GSS is developed based on the Concrete Damage Plasticity (CDP) model and the Brittle Cracking (BC) model. The effect of the rebar anchorage length is significant, while the increase of the thickness of sleeve and the grout strength are not very effective. A model for estimating ultimate load, including factors of inner diameter of sleeves, anchorage length, and rebar diameter, is proposed. The proposed model shows good agreement with various test data.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.