• Title/Summary/Keyword: Composite Effect

Search Result 4,632, Processing Time 0.039 seconds

RESEARCH ON SPACE ENVIRONMENTAL EFFECT OF ORGANIC COMPOSITE MATERIALS FOR THERMAL MANAGEMENT OF SATELLITES USING MC-50 CYCLOTRON (MC-50 싸이클로트론을 이용한 위성용 열조절 유기복합재료의 우주환경 영향 연구)

  • Kim, Dae-Weon;Kim, Dong-Iel;Huh, Yong-Hak;Yang, Tae-Keun;Lee, Ho-Young;Kim, Yong-Hyup
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2005
  • The organic material is one of the most popular material for the satellites and the spacecrafts in order to perform the thermal management, and to protect direct exposure from the space environment. The present paper observes material property changes of organic material under the space environment by using ground facilities. One of the representative organic thermal management material of satellites, 2 mil ITO(Indium Tin Oxide) coated aluminized KAPTON was selected for experiments. In order to investigate the single parametric effect of protons in space environment, MC-50 cyclotron system in KIRAMS(Korea Institute of Radiological and Medical Science) was utilized for the ion beam irradiation of protons and ion beam dose was set to the Very Large August 1972 EVENT model, the highest protons occurrence near the earth orbit in history. The energy of ion beam is fixed to 30MeV(mesa electron volt), observed average energy, and the equivalent irradiance time conditions were set to 1-year, 3-year, 5-year and 10-year exposure in space. The procedure of analyses includes the measurement of the ultimate tensile strength for the assessment of quantitative degradation in material properties, and the imaging analyses of crystalline transformation and damages on the exposed surface by FE-SEM(Field Emission Scanning Electron Spectroscopy) etc.

An Experimental Study on Simple Tension Connections for Square CFT Column to Beam Using Internal Plate with Holes (내부유공판을 사용한 각형 CFT 기둥-보 단순인장 접합부의 실험적 연구)

  • Lee, Seong Hui;Jung, Hun Mo;Yang, Il Seung;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.575-583
    • /
    • 2009
  • As the height of buildings rises, new structural systems are being applied other than theexisting S, RC, and SRC to decrease the weight of buildings and to make their construction more efficient, CFT structureshad been applied in many building construction projects due to their superior structural performance and construction efficiency. CFT structures need a diaphragm to harmoniously transmit the beam flange load to the column and the opponent beam in connections. Especially, on the right and left sides of the column other beams are connected, The establishment of a diaphragm for the lower part flange load delivery of the beam and guarantee for concrete filing capacity difficulty have (What does this mean?). In this paper, connection details are proposed in the form of a welded vertical plate with a circular hole on the CFT column's interior to harmoniously transmit the lower-part beam flange load to the column and the opponent beam. Thesediaphragm details use the concrete anchor effect in the beam flange load delivery, with the concrete-filled CFT column interior piercing the hole of the perforated plate, and a perforated board is established vertically to improve the concrete filling capacity. To analyze the structural performance of the proposed connection details, five simple tension specimens were made with the following parameters: with our without vertical and horizontal perforated plates, shear hole number, concrete filled or not, thickness of the perforated plate, etc. Then experimental tests were performed on these specimens.

Effect of Processing Parameters on the Densification of Carbon/Carbon Composite by Isothermal Low-Pressure Chemical Vapor Infiltration (등온 저압화학기상침투법에 의한 탄소/탄소 복합재료의 치밀화에 대한 제조공정변수의 영향)

  • Park, H.D.;Ahn, C.W.;Cho, K.;Yoon, B.Y.;Kim, K.S.
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.259-267
    • /
    • 1994
  • The effect of processing parameters, temperature, gas concentration, gas flow rate and pressure, were studied on the densification of carbon/carbon composites using a Robust design method in isothermal low-pressure chemical vapor infiltration with a gas system of $C_3H_8-N_2$ After one time of isothermal low-pressure chemical vapor infiltrat.ion, the bulk density of carbon/carbon composites in creased up to 1-9% and apparent porosity of the composites decreased down to 20-50%. ANOVA analysis of the experiment.al data revealed that the important parameters of isothermal lowpressure chemical vapor infiltration were temperature, gas concentration and gas flnw rate. 'There was almost no ~ f f e c t on densification by pressure and interaction between each parameters. In t, he present experimental conditions, the highest bulk density was obtained at $1100^{\circ}C$ temperature, 100% $C_3H_8$, concentration, 100 SCCM flow rate and 5 torr pressure.

  • PDF

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

THE EFFECT OF SMEAR LAYER REMOVAL AND POSITION OF DENTIN ON SHEAR BOND PROPERTIES OF DENTIN BONDING SYSTEMS TO INTERNAL CERVICAL DENTIN (도말층 제거와 상아질의 부위가 치수강 내부 상아질에 대한 수종 상아질 결합제의 전단결합성질에 미치는 영향)

  • Lim, Yoen-Ah;You, Young-Dae;Lee, Yong-Keun;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.465-472
    • /
    • 1999
  • The aim of this study was to determine the shear bond properties of four dentin bonding systems to internal cervical dentin, and to investigate the effect of the pretreatment for removing smear layer and position of dentin on shear bond strength of dentin bonding agents. The materials tested in this study were consisted of four commercially available dentin bonding systems[Allbond 2(AB), Clearfil Linerbond 2(CL), Optibond FL(OP), Scotchbond Multi-purpose(SB)], a restorative light-cured composite resin[Z100]J and a chelating agent[RC-prep(RC)]. Fifty-six freshly extracted human molars were used in this study. Dentin specimens were prepared by first cutting the root of the tooth 1mm below the cementoenamel junction with a diamond bur in a high speed handpiece under air-water coolant, and then removing occlusal part at pulp horn level by means of a second parallel section, The root canal areas were exposed by means of cutting the dent in specimens perpendicular to the root axis. Dentin specimens were randomly assigned to two groups(pretreated group, not-pretreated group) based on the pretreatment method of dentin surface. In pretreated group, RC was applied to dentin surface for 1minute and then rinsed with NaOCl. In not-pretreated group, dentin surface was rinsed with saline Each groups were subdevided into four groups according to dentin bonding systems. Four dentin bonding systems and a restorative resin were applied according to the directions of manufacturer. The dentin-resin specimens were embedded in a cold cure acrylic resin, and were cut with a low speed diamond saw to the dimension of $1{\times}1mm$. The cut specimens were divided into three groups according to the position of internal cervical dentin. The shear bond properties of dentin-resin specimens were measured with Universal testing machine (Zwick, 020, Germany) with the cross head speed of 0.5mm/min. From this experiment. the following results were obtained : 1. In case of shear bond strength, there was no significant difference among dentin bonding systems in not-pretreated groups, whereas in pretreated groups, the shear bond strengths of AB and of SB were statistically significantly higher than those of CL and of OP. 2. The shear bond strengths of AB and of SB in pretreated groups were significantly higher than those in not-pretreated groups. 3. The shear bond strengths of radicular layer of OP were higher than those of occlusal layer of OP in not-pretreated groups, and of AB in pretreated groups. The shear bond strengths of radicular layer of AB and of CL in not-pretreated groups were higher than those in pretreated group.

  • PDF

Effect of Maleic Ahydride Grafted PP on the Physical Properties of PP/Pulp Composites (PP/펄프 복합체의 물성에 미치는 말레인산무수물 그래프트 PP의 영향)

  • Lee, Jong Won;Kim, Won Gil;Kim, Youn Cheol
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.566-572
    • /
    • 2014
  • Maleic anhydride (MAH) grafted polypropylenes (PP) (MAH-g-PP) were prepared by changing MAH content and styrene monomer (SM)/MAH mole ratio with different type PP, using a twin screw extruder. The types of PP were isotatic PP (iPP), block PP (bPP), and random PP (rPP) and dicumyl peroxide (DCP) was used as an initiator. The graft degree of MAH was confirmed by the existence of carbonyl group (C=O) stretching peak at $3100cm^{-1}$ of FTIR spectrum. Thermal properties of MAH-g-PP and PP/MAH-g-PP/pulp composites were investigated by DSC and TGA. There was no district change in thermal properties of PP/MAH-g-PP/pulp composites. Based on tensile properties and SEM pictures for fractured surface of PP/MAH-g-PP/pulp composites, MAH-g-rPP was the best as the compatibilizer and optimum formulation was MAH content of 1.0 wt%, SM/MAH mole ratio of 1.0, and melt index (MI) of 25 g/10 min. The rheological properties of the composites were investigated by a dynamic rheometer. The complex viscosity, shear thinning effect, and water uptake incresed with pulp content.

Prediction of Optimal Microwave-assisted Extraction Conditions Preserving Valuable Functional Properties of Fluid Cheonggukjang Obtained from Red Ginseng (홍삼 첨가 액상청국장의 기능성에 대한 마이크로웨이브 최적 추출조건 예측)

  • Lee, Bo-Mi;Do, Jeong-Ryong;Kim, Hyun-Ku
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.474-480
    • /
    • 2007
  • Response surface methodology (RSM) was employed to optimize extraction conditions preserving valuable functional properties of fluid Cheonggukjang obtained from red ginseng. Based on a central composite design, the study plan was established using variations in microwave power, ethanol concentration, and extraction time. Regression analysis was applied to obtain a mathematical model. A maximum electron donating ability (EDA) of 99.09% was obtained under the specific extraction conditions of microwave power 135.62 W, ratio of solvent to sample contents. 3.60 g/mL, and an extraction time of 11.79 min. The maximum inhibitory effect on tyrosinase activity was 10.02% at 119.16 W, 4.02 g/mL, and 5.57 min. The maximum superoxide dismutase (SOD)-like activity was 63.83% under the extraction conditions of 125.29 W, 4.04 g/mL, and 11.02 min. Based on superposition of four-dimensional RSM data obtained to optimize electron donating ability, nitrite-scavenging ability, inhibitory effect on tyrosinase activity, and SOD-like activity, the optimum ranges of extraction conditions were found to be a microwave power of $l{\sim}85 W$, a ratio of solvent to sample content of $1.4{\sim}2.8\;g/mL$, and an extraction time of $6.5{\sim}11\;min$.

EFFECT OF SURFACE TREATMENT METHODS ON THE SHEAR BOND STRENGTH OF RESIN CEMENT TO ZIRCONIA CERAMIC

  • Lee, Ho-Jeong;Ryu, Jae-Jun;Shin, Sang-Wan;Sub, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.743-752
    • /
    • 2007
  • Statement of problem. The aims of the study were to evaluate the effect of current surface conditioning methods on the bond strength of a resin composite luting cement bonded to ceramic surfaces and to identify the optimum cement type. Material and methods. The sixty zirconia ceramic specimens(10 per group) with EVEREST milling machine and 60 tooth block were made. The zirconia ceramic surface was divided into two groups according to surface treatment: (1) airborne abrasion with $110{\mu}m$ aluminum oxide particles; (2) Rocatec system, tribochemical silica coating. The zirconia ceramic specimens were cemented to tooth block using resin cements. The tested resin cements were Rely X ARC, Panavia F and Superbond C&B. Each specimen was mount in a jig of the universal testing machine for shear strength. The results were subjected to 2-way ANOVA and Post hoc tests was performed using Tukey, Scheffe, and Bonferroni test. Results. The mean value of shear bond strength(MPa) were as follows: $$RelyXARC(+Al_2O_3),5.35{\pm}1.69$$; $$RelyXARC(+Rocatec),8.50{\pm}2.13$$; $$PanaviaF(+Al_2O_3),9.58{\pm}1.13$$; $$PanaviaF(+Rocatec),12.98{\pm}1.71$$; $$SuperbondC&B(+Al_2O_3)8.27{\pm}2.04$$; $$SuperbondC&B(+Rocatec),14.46{\pm}2.39$$. There was a significant increase in the shear bond strength when the ceramic surface was subjected to the tribochemical treatment(Rocatec 3M) in all cement groups(P<0.05). Bonding strengths of cements applied to samples treated with $Al_2O_3$ were compared; Rely X ARC showed the lowest values, whereas Panavia F cement showed higher value than that of Superbond C&B group with no statistical significance. When the bond strength of cements with of Rocatec treatment was compared, Rely X ARC showed lowest values. Overall, it was apparent that tribochemical treated Super-Bond possessed higher mean bond strength (14.46MPa; P<0.05) than that of Panavia F cement group with no significance. Conclusions. Silica coating followed silanization(Rocatec treatment) increase the bond strength between resin cement and zirconia ceramic. Panavia F containing phosphate monomer and Superbond C&B comprised of 4-META tend to bond chemically with zirconia ceramic, thus demonstrating higher bond strength compared to BisGMA resin cement. Superbond C&B has shown to have highest value of bonding strength to zirconia ceramic after Rocatec treatment compared to other cement.

Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.459-480
    • /
    • 2001
  • The damage suffered by steel structures during the Northridge (1994) and Kobe (1995) earthquakes indicates that the fully restrained (FR) connections in steel frames did not behave as expected. Consequently, researchers began studying other possibilities, including making the connections more flexible, to reduce the risk of damage from seismic loading. Recent experimental and analytical investigations pointed out that the seismic response of steel frames with partially restrained (PR) connections might be superior to that of similar frames with FR connections since the energy dissipation at PR connections could be significant. This beneficial effect has not yet been fully quantified analytically. Thus, the dissipation of energy at PR connections needs to be considered in analytical evaluations, in addition to the dissipation of energy due to viscous damping and at plastic hinges (if they form). An algorithm is developed and verified by the authors to estimate the nonlinear time-domain dynamic response of steel frames with PR connections. The verified algorithm is then used to quantify the major sources of energy dissipation and their effect on the overall structural response in terms of the maximum base shear and the maximum top displacement. The results indicate that the dissipation of energy at PR connections is comparable to that dissipated by viscous damping and at plastic hinges. In general, the maximum total base shear significantly increases with an increase in the connection stiffness. On the other hand, the maximum top lateral displacement $U_{max}$ does not always increase as the connection stiffness decreases. Energy dissipation is considerably influenced by the stiffness of a connection, defined in terms of the T ratio, i.e., the ratio of the moment the connection would have to carry according to beam line theory (Disque 1964) and the fixed end moment of the girder. A connection with a T ratio of at least 0.9 is considered to be fully restrained. The energy dissipation behavior may be quite different for a frame with FR connections with a T ratio of 1.0 compared to when the T ratio is 0.9. Thus, for nonlinear seismic analysis, a T ratio of at least 0.9 should not be considered to be an FR connection. The study quantitatively confirms the general observations made in experimental results for frames with PR connections. Proper consideration of the PR connection stiffness and other dynamic properties are essential to predict dynamic behavior, no matter how difficult the analysis procedure becomes. Any simplified approach may need to be calibrated using this type of detailed analytical study.