• Title/Summary/Keyword: Composite Ceramic

검색결과 1,347건 처리시간 0.027초

수열합성법으로 제조된 텅스텐이 도핑된 VO2의 열변색 특성 (Thermochromic Property of Tungsten Doped VO2 Prepared by Hydrothermal Method)

  • 안바룡;이근대;손대희;이승호;박성수
    • 공업화학
    • /
    • 제24권6호
    • /
    • pp.611-615
    • /
    • 2013
  • 본 연구에서는 바나듐 산화물($VO_2$)과 텅스텐이 도핑된 바나듐 산화물(W-$VO_2$) 분말을 바나듐 산화물($V_2O_5$)과 옥살산수화물로부터 수열합성과 하소공정을 통하여 성공적으로 제조하였다. 시료들의 결정구조와 열변색 특성들은 FE-SEM, XRD, XPS, DSC 및 UV-Vis-NIR 분광기를 이용하여 분석하였다. W-$VO_2$ 시료에 W의 도핑량을 증가시키면, W-$VO_2$ 시료의 상전이 온도가 $70^{\circ}C$에서 $42^{\circ}C$로 낮아지는 경향이 있었다. 또한, W-$VO_2$ 시료를 상전이 온도 이상으로 가열시키면 UV-Vis-NIR 곡선이 가시광 영역에서는 변하지 않고 NIR 영역에서는 낮은 투과도 방향으로 이동하는 경향이 있었다.

도재 수리 시스템의 전단결합강도에 관한 연구 (Shear Bond Strength of Porcelain Repair Systems)

  • 우수;신수연;조인호
    • 구강회복응용과학지
    • /
    • 제22권3호
    • /
    • pp.211-220
    • /
    • 2006
  • Need of porcelain-repair system is largely demanding as dental porcelain restorations are increased in clinical dentistry. This study investigated shear bond strength of commercial porcelain-repair systems on dental porcelain and their reliability. Experimental groups were as follows; Group A Super Bond C&B, Group B Porcelain repair kit, Group C Ceramic repair, and Group D Spectrum system as a control. Porcelain disks were fired and embedded in epoxy resin. Porcelain surface were ground using 220 grit SiC disk, then cleaned in ultrasonic bath. Then porcelain specimens were treated with each repair system. A clear polystyrene cylinder 3.5 mm in internal diameter was filled with composite resin. Then the resin cylinder was polymerized with a visible light curing unit. Thirty one specimens at each group were prepared and stored at $37^{\circ}C$ distilled water for 48 h. Specimens were tested in an Instron testing machine according to ISO TR 11405. Mean shear bond strength and standard deviation of each group was $15.7{\pm}4.1MPa$ (Group A), $12.8{\pm}4.9MPa$ (Group B), $7.2{\pm}3.0MPa$ (Group C) and $9.6{\pm}2.2MPa$ (Group D). ANOVA and Tukey HSD post-hoc test showed that there were significant differences between groups (p<0.05). Data of bond strength were analyzed with two-parameter Weibull distribution. Confidence interval of Weibull modulus (m-parameter) at 95% of Group A (3.5-6.3) and Group D (3.6-6.0) were significantly higher than Group B (2.2-3.7) and Group C (2.0-3.4). There was little correlation between mean shear bond strength and Weibull modulus. Results indicated that acid-etching of porcelain surface increased porcelain-resin shear bonding strength.

전부피개관의 물성과 시멘트의 물성이 시멘트 내부의 응력에 미치는 영향 (Characterization of the Stress in the Luting Cement layer Influenced by Material Properties of Full Veneer Crown)

  • 이준영;이규복;이청희;조광헌
    • 구강회복응용과학지
    • /
    • 제25권1호
    • /
    • pp.1-12
    • /
    • 2009
  • 이 논문의 목적은 시멘트 층 내의 응력분포에 대해 금관의 물성과 시멘트의 물성 및 교합력의 방향이 미치는 영향을 이차원 유한요소분석으로 조사하는 것이다. Chamfer 변연을 가지는 23개의 하악 제1대구치 모델을 상정하였다. 금관의 재질은 제 3형 금합금, Ni-Cr 합금, 세라믹, 복합레진 등 4가지이며, 시멘트의 재질은 인산 아연 시멘트와 글라스 아이오노머 시멘트 등 2가지이다. 치축과 평행하게 또는 경사지게 하여 1N 단위로 금관에 하중을 가했다. 시멘트층의 응력은 금관 변연이 다른 곳보다 더 높았다. 치축에 평행한 하중이 치축에 경사진 하중보다 더 높은 응력을 발생시켰다. 경도가 더 큰 금관은 시멘트 층 내에서 더 높은 응력을 나타냈으며, 더 높은 응력은 더 큰 Young's modulus을 나타냈다.

Investigation of Direct and Mediated Electron Transfer of Laccase-Based Biocathode

  • Jamshidinia, Zhila;Mashayekhimazar, Fariba;Ahmadi, Masomeh;Molaeirad, Ahmad;Alijanianzadeh, Mahdi;Janfaza, Sajad
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Enzymatic fuel cells are promising low cost, compact and flexible energy resources. The basis of enzymatic fuel cells is transfer of electron from enzyme to the electrode surface and vice versa. Electron transfer is done either by direct or mediated electron transfer (DET/MET), each one having its own advantages and disadvantages. In this study, the DET and MET of laccase-based biocathodes are compared with each other. The DET of laccase enzyme has been studied using two methods; assemble of needle-like carbon nanotubes (CNTs) on the electrode, and CNTs/Nafion polymer. MET of laccase enzyme also is done by use of ceramic electrode containing, ABTS (2,2'-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid]) /sol-gel. Cyclic voltammetric results of DET showed a pair of well-defined redox peaks at $200{\mu}A$ and $170{\mu}A$ in a solution containing 5and $10{\mu}M$ o-dianisidine as a substrate for needle-like assembled CNTs and CNTs-Nafion composite respectively. In MET method using sol-gel/ABTS, the maximum redox peak was $14{\mu}A$ in the presence of 15 M solution o-dianisidine as substrate. The cyclic voltammetric results showed that laccase immobilization on needle-like assembled CNTs or CNTs-Nafion is more efficient than the sol-gel/ABTS electrode. Therefore, the expressed methods can be used to fabricate biocathode of biofuel cells or laccase based biosensors.

Spray Dry한 $\beta$-SiC-Ti $B_2$ 도전성 세라믹 복합체의 특성에 미치는 Annealing 온도 (Effect of Annealing Temperature on the Properties of $\beta$ -SiC-Ti $B_2$ Electrocondutive Ceramic Composites by Spray Dry)

  • 신용덕;주진영;최광수;오상수;서재호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권8호
    • /
    • pp.335-341
    • /
    • 2003
  • The composites were fabricated respectively 61vo1.% $\beta$ -SiC and 39vo1.% Ti $B_2$ spray-dried powders with the liquid forming additives of l2wt% $Al_2$ $O_3$$Y_2$ $O_3$ by pressureless annealing at 1$700^{\circ}C$, 175$0^{\circ}C$, 180$0^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed $\alpha$ -SiC(6H), Ti $B_2$, and YAG(A $l_{5}$ $Y_3$ $O_{12}$ ) crystal phase. The relative density, the Young's modulus and fracture toughness showed respectively the highest value of 92.97%, 92.88Gpa and 4.4Mpaㆍ $m^{\frac{1}{2}}$ for composites by pressureless annealing temperature 1$700^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of 8.09${\times}$10$^{-3}$ ㆍcm for composite by pressureless annealing temperature 1$700^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the SiC-Ti $B_2$ composites was all positive temperature cofficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to $700^{\circ}C$.

$Al_2O_3+Y_2O_3를 첨가한 {\beta}-SiC-TiB_2$ 복합체의 특성 (Properties of the $\beta-SiC-TiB_2$ Composites with $Al_2O_3+Y_2O_3$ additives)

  • 임승혁;신용덕;주진영;윤세원;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권7호
    • /
    • pp.394-399
    • /
    • 2000
  • The mechanical and electrical properties of pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), TiB2, and (Al5Y3O12). Reaction between Al2O3 and $Y_2O_3$ formed YAG but the relative density decreased with increasing $Al_2O_3+Y_2O_3$ contents. The Flexural strength showed the value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives at room temperatures. Owing to crack deflection and crack bridging, the fracture toughness showed 6.2, 6.0 and 6.6 MPa.m1/2 for composites added with 4, 8 and 12 wt% Al2O3+Y2O3 additives respectively at room temperature. The resistance temperature coefficient showed the value of $3.6\times10^{-3},\; 2.9\times10^{-3}\; and\; 3.0\times10^{-3} /^{\circ}C$$^{\circ}C$ for composite added with 4, 8 and 12 wt% $Al_2O_3+Y_2O_3$additives respectively at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}$.

  • PDF

액상소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성(II) (Properties and Manufacture of $\beta-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering(II))

  • 윤세원;황철;주진영;신용덕
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권2호
    • /
    • pp.92-97
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC+39vol. %ZrB2 electroconductive ceramic composites were investigated by adding 1, 2, 3wt% Al2O3+Y2O3(6:4wt%) of the liquid forming additives. In this microstructures, no reactions were observed between $\beta-SiC$ and ZrB2. The relative density is over 90.8% of the theoretical density and the porosity decreased with increasing Al2O3+Y2O3 contents. Phase analysis of the composites by XRD revealed $\alpha-SiC(6H, 4H)$, ZrB2 and $\beta-SiC$(15R). Flexural srength showed the highest of 315.5MPa for composites added with 3wt% Al2O3+Y2O3 additives as room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 5.5MPa.m1/2 and 5.3MPa.m1/2 for composites added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively at room temperature. The area fraction of the elongated SiC grain in the etched surface of sample showed 65% and 65.1% for composite added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively. The electrical resistivity at room temperature. The electrical resistivity of the composites wall all positive temperature coefficient(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

액상소결에 의한 $\beta-SiC-TiB_2$ 복합체의 제조와 특성 (Manufacture of $\beta-SiC-TiB_2$ Composites Densified by Liquid-Phase Sintering)

  • 신용덕;주진영;박미림;소병문;임승혁;송준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.479-481
    • /
    • 2000
  • The effect of $Al_{2}O_{3}+Y_{2}O_{3}$ additives on fracture toughness of $\beta-SiC-TiB_2$ composites by hot-pressed sintering were investigated. The f$\beta-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 16, 20, 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 95.88% of the theoretical density and the porosity increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest of $5.88MPa{\cdot}m^{1/2}$ for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity showed the lowest of $5.22{\times}10^{-4}\Omega{\cdot}cm$ for composite added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature and is all positive temperature coefficient resistance (PTCR) against temperature up to $700^{\circ}C$.

  • PDF

적외선 감지를 위한 0~3 $PbTiO_3$/P(VDF/TrFE) 복합체 필름의 향상된 초전 특성 (Improved Pyroelectric Characteristics of 0~3 $PbTiO_3$/P(VDF/TrFE) Composites Films for Infrared Sensing)

  • 권성열
    • 폴리머
    • /
    • 제35권5호
    • /
    • pp.375-377
    • /
    • 2011
  • 두 단계 스핀 코팅 방법을 사용하여 세라믹 체적 분율 0.10과 0.13의 $PbTiO_3$/P(VDF/TrFE) 0~3형 복합재료를 제작하고 분석하였다. 0~3형 $PbTiO_3$/P(VDF/TrFE) 복합재료를 SEM 전자현미경 사진으로 성공적으로 확인할 수 있었다. 이러한 전자현미경 사진을 통하여 복합재료의 0~3형 구조를 재확인하였다. 0~3형 $PbTiO_3$/P(VDF/TrFE) 복합재료는 P(VDF/TrFE) 공중합체보다 센서용 전기적 특성이 우수함을 나타내었다. 그러므로 이러한 낮은 유전상수와 높은 초전계수를 나타내는 0~3형 $PbTiO_3$/P(VDF/TrFE) 복합재료는 더 높은 성능을 나타낼 수 있는 새로운 초전형 센서 재료로 사용될 수 있다.

$\beta-SiC-ZrB_2$ 복합체의 파괴인성 증진연구 (A Study on Improvement of Fracture Toughness of $\beta-SiC-ZrB_2$Composites)

  • 신용덕;주진영;윤세원;황철;송준태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.291-294
    • /
    • 1999
  • The effect of AI$_2$O$_3$+Y$_2$O$_3$additives on fracture toughness of $\beta$-SiC-ZrB$_2$composites by hot-pressed sintering were Investigated. The $\beta$-SiC-ZrB$_2$ ceramic composites were hot-presse sintered and annealed by adding 1, 2, 3wt% AI$_2$O$_3$+Y$_2$O$_3$(6:4wt%) powder as a liquid forming additives at 195$0^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and ZrB$_2$, and the relative density Is over 90.79% of the theoretical density and the porosity decreased with increasing AI$_2$O$_3$+Y$_2$O$_3$ contents. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of 5.5328MPa . m$^{1}$2/ for composites added with 2wt% AI$_2$O$_3$+Y$_2$O$_3$ additives at room temperature. But the standard deviation of fracture toughness of specimens decreased with increasing AI$_2$O$_3$+Y$_2$O$_3$ contents and showed the highest of 0.8624 for composite tilth 1wt%, AI$_2$O$_3$+Y$_2$O$_3$additives.

  • PDF