DOI QR코드

DOI QR Code

Investigation of Direct and Mediated Electron Transfer of Laccase-Based Biocathode

  • Jamshidinia, Zhila (Department of Biology, Science and Research Branch, Islamic Azad University) ;
  • Mashayekhimazar, Fariba (Department of bioscience and Biotechnology, Malek Ashtar University of Technology) ;
  • Ahmadi, Masomeh (Department of Biology, Science and Research Branch, Islamic Azad University) ;
  • Molaeirad, Ahmad (Department of bioscience and Biotechnology, Malek Ashtar University of Technology) ;
  • Alijanianzadeh, Mahdi (Department of bioscience and Biotechnology, Malek Ashtar University of Technology) ;
  • Janfaza, Sajad (Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University)
  • Received : 2015.07.20
  • Accepted : 2015.12.23
  • Published : 2017.06.30

Abstract

Enzymatic fuel cells are promising low cost, compact and flexible energy resources. The basis of enzymatic fuel cells is transfer of electron from enzyme to the electrode surface and vice versa. Electron transfer is done either by direct or mediated electron transfer (DET/MET), each one having its own advantages and disadvantages. In this study, the DET and MET of laccase-based biocathodes are compared with each other. The DET of laccase enzyme has been studied using two methods; assemble of needle-like carbon nanotubes (CNTs) on the electrode, and CNTs/Nafion polymer. MET of laccase enzyme also is done by use of ceramic electrode containing, ABTS (2,2'-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid]) /sol-gel. Cyclic voltammetric results of DET showed a pair of well-defined redox peaks at $200{\mu}A$ and $170{\mu}A$ in a solution containing 5and $10{\mu}M$ o-dianisidine as a substrate for needle-like assembled CNTs and CNTs-Nafion composite respectively. In MET method using sol-gel/ABTS, the maximum redox peak was $14{\mu}A$ in the presence of 15 M solution o-dianisidine as substrate. The cyclic voltammetric results showed that laccase immobilization on needle-like assembled CNTs or CNTs-Nafion is more efficient than the sol-gel/ABTS electrode. Therefore, the expressed methods can be used to fabricate biocathode of biofuel cells or laccase based biosensors.

Keywords

References

  1. K. Min, J.H. Ryu and Y.J. Yoo, Biotechnol. Bioproce Eng. 2010, 15, 371-375. https://doi.org/10.1007/s12257-009-3034-z
  2. R.A. Bullen, T.C. Arnot, J.B. Lakeman and F.C. Walsh, Biosens. Bioelectron. 2006, 21(11), 2015-2045. https://doi.org/10.1016/j.bios.2006.01.030
  3. J.Kim, H. Jia and P. Wang, Biotechnol. Adv. 2006, 24, 296-308. https://doi.org/10.1016/j.biotechadv.2005.11.006
  4. J. Shim, G.Y. Kim and S.H. Moon, J. Electroanal. Chem. 2011, 653, 14-20. https://doi.org/10.1016/j.jelechem.2011.01.015
  5. L. Betancor, G.R. Johnson and H.R. Luckarift, Chem. Cat. Chem. 2013, 5, 46-60.
  6. A. Kunamneni, A. Ballesteros, F.J. Plou and M. Alcalde, Communicating current research and educational topics and trends in applied microbiology, formatex, New York (2007).
  7. Y. Wang, D. Zhang, F.R. He and X.C. Chen, Chin. Chem. Lett. 2012, 23, 197-200. https://doi.org/10.1016/j.cclet.2011.10.011
  8. P. Baldrian, FEMS Microbiol. Rev. 2006, 30, 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  9. S.C. Barton, H.H. Kim, G. Binyamin, Y. Zhang and A.Heller, J. Am. Chem. Soc. 2001, 123, 5802-5803 https://doi.org/10.1021/ja010408b
  10. R.S. Freire, N. Duran and L.T. Kubota, Talanta, 2001, 54, 681-686. https://doi.org/10.1016/S0039-9140(01)00318-6
  11. M. Balakshin, C.L. Chen, J.S. Gratzl, A.G. Kirkman and H. Jakob, J. Mol. Catal. B: Enzym. 2001, 16, 205-215. https://doi.org/10.1016/S1381-1177(01)00062-5
  12. F.S. Cadorin, V.I. Cruz, A.M.J. Barbosa and F.V. Souza, Electroanalysis, 2011, 23, 1623-1630. https://doi.org/10.1002/elan.201100044
  13. M.T. Sulak, E. Erhan, B. Keskinler, F. Yilmaz and A. Celik, Sensor Lett. 2010, 8, 262-267. https://doi.org/10.1166/sl.2010.1260
  14. R. Rawal, S. Chawla and C.S. Pundir, Anal. Biochem. 2011, 419, 196-204. https://doi.org/10.1016/j.ab.2011.07.028
  15. B.A. Kuznetsov, G.P. Shumakovich, O.V. Koroleva and A.I. Yaropolov, Biosens. Bioelectron. 2001, 16, 73-84. https://doi.org/10.1016/S0956-5663(00)00135-4
  16. S.C. Gutierrez, M. Pita, C. Vaz-Dominguez, S. Shleev and A.L. De-Lacey, J. Am. Chem. Soc. 2012, 134, 17212-17220. https://doi.org/10.1021/ja307308j
  17. J. Liu, A. Chou, W. Rahmat, M.N. Paddon?Row, J.J. Gooding, Electroanalysis, 2005, 17, 38-46. https://doi.org/10.1002/elan.200403116
  18. X.J. Huang, S.W. Ryu, H.S. Im and Y.K. Choi, Langmuir, 2007, 23, 991-994. https://doi.org/10.1021/la063144l
  19. L. Deng, F. Wang, H. Chen, L. Shang, L. Wang, T. Wang and S. Dong, Biosens. Bioelectron. 2008, 24, 329-333. https://doi.org/10.1016/j.bios.2008.04.006
  20. W. Nogala, E. Rozniecka, I. Zawisza, J. Rogalski and M. Opallo, Electrochem. Commun. 2006, 8, 1850-1854. https://doi.org/10.1016/j.elecom.2006.08.024
  21. E. Laviron, J Electroanal Chem Interfacial Electrochem. 1979, 100, 263-270. https://doi.org/10.1016/S0022-0728(79)80167-9

Cited by

  1. Comprehensive Study of the Enzymatic Catalysis of the Electrochemical Oxygen Reduction Reaction (ORR) by Immobilized Copper Efflux Oxidase (CueO) From Escherichia coli vol.6, pp.2296-2646, 2018, https://doi.org/10.3389/fchem.2018.00358