• Title/Summary/Keyword: Composite Carbody

Search Result 61, Processing Time 0.03 seconds

Structural Characterization of Repaired Sandwich Composite Laminates (샌드위치 복합재의 보수 후 특성평가)

  • Kim, Jung-Seok;Lee, Jae-Hun;Chung, Seong-Kyun;Kim, Seung-Chul;Seo, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.132-137
    • /
    • 2007
  • This paper explains compressive behaviors of sandwich composite laminates with adhesively bonded patches. The sandwich composite laminate is used for a train carbody structure and is of an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces. The sandwich composite laminates were damaged by low velocity impact. The damaged sandwich composite laminate was repaired using scarf repair method. Then, the strength restoration of it was assessed by compressive test. From the test, it could be known that the compressive strength was restored up to 91% of undamaged one.

  • PDF

Tensile Failure Characterization of Composites for Railway Vehicle (철도차량 복합소재의 인장파괴 특성분석)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF

Stacking Sequence Optimization of Composite Laminates for Railways Using Expert System (철도분야 응용을 위한 전문가 시스템을 이용한 복합적층판의 적층순서 최적설계)

  • Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.411-418
    • /
    • 2005
  • This paper expounds the development of a user-friendly expert system for the optimal stacking sequence design of composite laminates subjected to the various rules constraints. The expert system was realized in the graphic-based design environment. Therefore, users can access and use the system easily. The optimal stacking sequence is obtained by means of integration of a genetic algorithm, finite element analysis. These systems were integrated with the rules of design heuristics under an expert system shell. The optimal stacking sequence combination for the application of interest is drawn from the discrete ply angles and design rules stored in the knowledge base of the expert system. For the integration and management of softwares, a graphic-based design environment that provides multi-tasking and graphic user interface capability is built.

Compressive Strength Restoration Evaluation of Sandwich Composite Laminates Repaired by Scarf Method (패치 보수된 샌드위치 복합재 적층판의 압축시 강도회복 평가)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Kim, Seung-Cheol;Seo, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.110-114
    • /
    • 2009
  • This study is for the evaluation of compressive strength restoration of sandwich composite laminates with adhesively bonded scarf patches. It was used in this study that the sandwich composite laminate with an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces was applied to the car body structure for Korean tiling train. In this study, it was damaged by low velocity impact and repaired using scarf repair method. Then, the compressive strength restoration of assessed by compressive after impact (CAI) test. From the test, it could be known that the compressive strength was restored up to 72% by only scarf repair method and 91% applied by an extra ply over the undamaged one.

Study about Electrical Insulation and earthing system of Bimodal Tram with Polymer Composite Body (고분자복합소재차체를 적용한 바이모달트램의 전기적 절연 및 접지시스템에 관한 연구)

  • Lee, Kang-Won;Mok, Jai-Kyun;Kil, Gyung-Suk;Park, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1063-1064
    • /
    • 2008
  • Bimodal tram has a carbody made of polymer composite material which is good electrical insulator. As an series hybrid type, Alternating voltage generated from generator coupled with CNG engine are rectified and transformed to variable voltage ranges which are applied to electrical apparatus and ECUs equipped inside of the tram. The failures of electrical insulation between high voltage($400V{\sim}800V$) and low voltage(24V) or between different kind of voltages such as AC and DC may cause some electrical interferences to prevent from operating rightly and other safety problem. This paper have investigated about the degradation factors of the electrical insulation and the earthing method available to bimodal tram, which is effective for preventing the electromagnetic interference coming from the inside or outside of tram but need some detecting measurements of earth leakage through electrical systems.

  • PDF

Adheive Joining Technique for Composite/Aluminum Joint in Carbody of Tilting Train (틸팅차량 차체의 복합재/알루미늄 접합을 위한 접착체결기법)

  • Yoon Sung-Ho;Shin Kwang-Bok;Han Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.395-400
    • /
    • 2003
  • Adhesive joining technique is considered as one of hot issues in developing advanced composite structures. The designer should be familiar with important guidelines of fundamental principles and ideas underlying the design and application of adhesive joints for a correct joint design. This study deals with the following characteristics of adhesive joining techniques: (1) design parameters the affect the performance of joining, (2) fundamental principles and design methods of joining, (3) adhesive selection, (4) surface pre-treatment of the adherand, and (6) test methods. The results would be used to predict the performance of adhesive joints subjected to a thermal aging.

  • PDF

Development of Design and Technology for Fuel cell Carbody with Composite Suitable to the Urban Transportation System (도심의 교통시스템에 적합한 복합소재의 연료전지 차체설계기술 개발)

  • Oh Kyung-Won;Lee Sang-Jin;Jeong Jong-Cheol;Park Mi-Yung;Cho Sea-Hyun;Mok Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.434-439
    • /
    • 2005
  • In order to prevent the global warming, Korea has had a ratification to the Kyoto Protocol which is specified the air pollution level should be lower the condition of the year 1990 until the year 2012, in hence the traffic system produced mostly the air pollution has been faced to big change. According to the reinforcement of higher level for environmental condition, alternative way to the conventional traffic system is required, so that is fuel cell technology of commercialized R&D program used by hydrogen fuel, and further for the optimized high energy efficiency it has been considered the advanced development of traffic system used the conventional railroad system. But it is moreover expected the huge amount of initial investment, so at the current, next new traffic system is needed. This study is for the improvement of urban traffic system in domestic which should be seriously changed for environmental friendly through the reduction of air pollution by fuel gases of vehicle and human convenience to be easily approached. In hence it is proposed the development of superior high efficiency-'Fuel-cell Rubber-tired Tram' system manufactured by the composite car-body.

  • PDF

Durability of Carbon/Epoxy Composites for Train Carbody under Salt Water Environment (염수환경에 노출된 철도차량용 탄소섬유/에폭시 복합재의 내구성 평가)

  • Hwang, Young-Eun;Yoon, Sung-Ho;Kim, Jung-Suk;Han, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.852-858
    • /
    • 2007
  • The durability of carbon/epoxy composites under salt water environment was investigated through salt water spray tester. Salt water environment was obtained through salt spray and salt immersion. 5% NaCl solution was used for salt water as natural salt water. Mechanical test was performed to obtain tensile properties, flexural properties, and shear properties of carbon/epoxy composite over 12 months under salt water environment. Dynamic mechanical analyzer was used to investigate thermal analysis properties such storage modulus, loss modulus, and tan ${\delta}$. Also FT/IR test was conducted to investigate a change in chemical structure. According to the results, mechanical properties were found to be slowly degraded as a function of exposure times. Regarding to thermal analysis properties, storage modulus was insensitive to exposure times, but loss modulus was shown to be slightly decreased. Although the shape and location of peak in FT/IR were not much changed, the intensity of peak in FT/IR was affected on exposure times. We also found that salt water immersion was more severe to the durability of carbon/epoxy composite rather than salt water spray.

  • PDF

A Study of Aging Effect for Train Carbody Using Accelerated Aging Tester

  • Nam, Jeong-Pyo;LI, Qingfen;LI, Hong
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • The long-tenn exposure of polymeric composite materials to extreme-use environments, such as pressure, temperature, moisture, and load cycles, results in changes in the original properties of the material. In this study, the effect of combined environmental factors such as ultraviolet ray, high temperature and high moisture on mechanical and thermal analysis properties of glass fabric and phenolic composites are evaluated through a 2.5 KW accelerated environmental aging tester. The environmental factors such as temperature, moisture and ultraviolet ray applied of specimens. A xenon-arc lamp is utilized for ultraviolet light and exposure time of up to 3000 hours are applied. Several types of specimens - tensile, bending, and shear specimens that are warp direction and fill direction are used to investigate the effects of environmental factors on mechanical properties of the composites. Mechanical degradations for tensile, bending and shear properties are evaluated through a Universal Testing Machine (UTM). Also, storage shear modulus, loss shear modulus and tan a are measured as a function of exposure time through a Dynamic Mechanical Analyzer (DMA). From the experimental results, changes in material properties of glass fabric and phenolic composites are shown to be slightly degraded due to combined environmental effects.

  • PDF

Finite Element Analysis and Validation for Mode I Interlaminar Fracture Behavior of Woven Fabric Composite for a Train Carbody Using CZM(Cohesive Zone Model) (CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seol;Yoon, Hyuk-Jin;Seo, Seung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.719-724
    • /
    • 2009
  • In this study, DCB(double cantilever beam) specimens of woven fabric carbon/epoxy and glass/epoxy were manufactured and mode I fracture toughness of specimen was measured according to ASTM 5528-01. And FE analysis was conducted in the same condition and evaluated the behavior of delamination analytically. Mode I fracture toughness measured by test was $845.7\;J/m^2$ in the case carbon/epoxy and that of glass/epoxy was $1,042\;J/m^2$. FE analysis was conducted using cohesive elements for adhesive layer and applied measured fracture toughness. To verify the result of analysis, the reaction force measured at the end of specimen and that calculated by Timoshenko beam theory were compared. The numerical results show good agreements with the measured one.