• Title/Summary/Keyword: Composite Action

Search Result 361, Processing Time 0.021 seconds

Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario

  • Zhong, Wei-hui;Tan, Zheng;Tian, Li-min;Meng, Bao;Zheng, Yu-hui;Daun, Shi-chao
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.663-679
    • /
    • 2021
  • To elucidate the differences in the collapse behavior between a single-story beam-column assembly and multi-story frame, two 1/3-scale two-bay composite frames, including a single-story composite beam-column assembly and a three-story composite sub-frame, were designed and quasi-statically tested. The load-displacement responses, failure modes, and internal force development of the two frames were analyzed and compared in detail. Furthermore, the resistance mechanisms of the two specimens were explored, and the respective contributions of different load-resisting mechanisms to the total resistances were quantitatively separated to gain deeper insights. The experimental tests indicated that Vierendeel action was present in the two-dimensional multi-story frames, which led to an uneven internal force distribution among the three stories. The collapse resistance of TSDWA-3S in the flexural stage was not significantly increased by the structural redundancy provided by the additional story, as compared to that of TSDWA-1S. Although the development of the load response was similar in the two specimens at flexural stage, the collapse mechanisms of the multi-story composite frame were much more complicated than those of the single-story beam-column assembly, and the combined action between stories was critical in determining the internal force redistribution and rebalancing of the remaining structure.

Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints

  • Nogueiro, Pedro;da Silva, Luis Simoes;Bento, Rita;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.39-58
    • /
    • 2009
  • Composite joints, considering the composite action of steel and concrete, exhibit, in general, high strength and high ductility. As a consequence, the use of this type of joint has been increasing in many countries, especially in those that are located in earthquake-prone regions. In this paper, a hysteretic model with pinching is presented that is able to reproduce the cyclic response of steel and composite joints. Secondly, the computer implementation and adaptation of the model in a spring element within the computer code Seismosoft is described. The model is subsequently calibrated using a series of experimental test results for composite joints subjected to cyclic loading. Finally, typical parameters for the various joint configurations are proposed.

A Study on the strength evaluation for T-type Composite Beam (T형 합성보의 내력평가에 관한 연구)

  • Kim, Sang Mo;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.467-474
    • /
    • 2003
  • Composite action can be achieved by providing shear connectors between the steel top flange and concrete topping. Composite sections are stiffer than the sum of the individual stiffness of slab and beam. They can therefore carry heavier loads or similar loads with appreciably smaller deflection. They are also less prone to transient vibration. In this study, T-type Steel Composite beam (TSC-beam) was developed and tested. The test results of TSC beam were compared with the theoretical results based on composite actions.

Stability analysis of semi-rigid composite frames

  • Wang, Jing-Feng;Li, Guo-Qiang
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.119-133
    • /
    • 2007
  • Based on stability theory of current rigid steel frames and using the three-column subassemblage model, the governing equations for determining the effective length factor (${\mu}$-factor) of the columns in semirigid composite frames are derived. The effects of the nonlinear moment-rotation characteristics of beam-to-column connections and composite action of slab are considered. Furthermore, using a two-bay three-storey composite frame with semi-rigid connections as an example, the effects of the non-linear moment-rotation characteristics of connections and load value on the ${\mu}$-factor are numerically studied and the ${\mu}$-factors obtained by the proposed method and Baraket-Chen's method are compared with those obtained by the exact finite element method. It was found that the proposed method has good accuracy and can be used in stability analysis of semi-rigid composite frames.

Simplified equations for Vierendeel design calculations of composite beams with web openings

  • Panedpojaman, Pattamad
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.401-416
    • /
    • 2018
  • Composite beams with web openings are vulnerable to Vierendeel bending failure. The available methods provide quite conservative estimates of Vierendeel bending resistance. An alternative design method to compute the resistance was proposed in this study, based on quadratic nonlinear interactions of normalized shear force, axial force and Vierendeel bending moment. The interactions of the top and bottom Tee section must satisfy mutual conditions to prevent the Vierendeel failure. The normalized shear force and Vierendeel bending moment of the composite part were used instead in the top Tee interaction. The top Tee axial force was computed based on force equilibrium. Based on a rigid-plastic model, the composite resistance is estimated using an effective slab width of the vertical shear resistance. On using the proposed method, nonlinear reductions due to shear loads and axial forces are not required, in contrast to prior methods. The proposed method was validated against experiments from literature. The method limitations and accuracy as well as the Vierendeel behavior were investigated by finite element simulations, with varied composite beam parameters. The proposed design loads are less conservative than earlier estimates and deviate less from the simulations.

Analysis of the Composite Section in PSC-Steel Hybrid Girder (PSC-강 혼합거더의 연결부 거동 해석)

  • Kim Kwang Soo;Jung Kwang Hoe;Shim ChungWook;Yoo Sung Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.766-769
    • /
    • 2004
  • This paper presents 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-Steel hybrid girders. According to the slip modulus, the nonlinear analysis shows that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results show that the PSC-Steel hybrid girders with shear connectors take the part of partial composite action in ultimate load stage. In addition, the load test results give that stud shear connectors and welded reinforcements have contributed to improve the ultimate strength of hybrid girders for about $20\%$.

  • PDF

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.495-508
    • /
    • 2020
  • Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

Flexural Behaviors of PSC Composite Girders in Negative Moment Regions (콘크리트 충전 강관을 갖는 프리스트레스트 합성거더의 부모멘트 구간 거동)

  • Kang, Byeong-Su;Ju, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.169-176
    • /
    • 2006
  • Prestressed composite girder with concrete infilled steel tubes(PSC-CFT girder) is new type of bridge girder which enhances the resisting capacities due to the double composite action of PSC composite girder and concrete infilled tube. The flexural behaviors of PSC-CFT girder in the negative moment regions are investigated based on the experimental observations recently performed on two of 3.6m long specimens. The mechanical and structural roles and failure mechanism of the composite action are discussed through comparing the test results with those numerically predicted by the three methods of one and three-dimensional nonlinear finite element analysis, and section analysis method.

Ultimate Strength Interaction of Steel/Concrete Composite Trapezoidal Box Girders Subjected to Concurrent Action of Bending and Torsion (휨과 비틀림을 동시에 받는 강/콘크리트 합성 제형 박스거더의 극한강도 상호작용)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.465-475
    • /
    • 2010
  • In the horizontally curved bridges, girders are subjected to the combined action of vertical bending and torsion due to their curvatures without any eccentric loads. As subjected to bending and torsion, the ultimate strength of steel/concrete composite box girders are limited by the diagonal tensile stress in the deck concrete induced by the St. Venant torsion. To determine the ultimate strength of composite box girders in bending and torsion and their interactions, this study conducted a 3-dimensional FEA and classical strength of materials investigation. Using ABAQUS, the FEA fully utilized advanced nonlinear analysis techniques simulating material/geometrical nonlinearity and post-cracking behaviors. The ultimate strength from numerical data were compared with theoretically derived values. Concurrent compressive stresses in the concrete deck improve the shear-resisting capacity of concrete, thereby resulting in an increased torsional resistance of the composite box girder in positive bending. The proposed interaction equation is very simple yet it provides a rational lower bound in determining the ultimate strength of concrete/steel composite box girders.