• 제목/요약/키워드: Components temperature

검색결과 3,218건 처리시간 0.032초

Overview on Ceramic and Nanostructured Materials for Solid Oxide Fuel Cells (SOFCs) Working at Different Temperatures

  • Priya, S. Dharani;Selvakumar, A. Immanuel;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.99-116
    • /
    • 2020
  • The article provides information on ceramic / nanostructured materials which are suitable for solid oxide fuel cells (SOFCs) working between 500 to 1000℃. However, low temperature solid oxide fuel cells LTSOFCs working at less than 600℃ are being developed now-a-days with suitable new materials and are globally explored as the "future energy conversion devices". The LTSOFCs device has emerged as a novel technology especially for stationary power generation, portable and transportation applications. Operating SOFC at low temperature (i.e. < 600℃) with higher efficiency is a bigger challenge for the scientific community since in low temperature regions, the efficiency might be less and the components might have exhibited lower catalytic activity which may result in poor cell performance. Employing new and novel nanoscale ceramic materials and composites may improve the SOFC performance at low temperature ranges is most focused now-a-days. This review article focuses on the overview of various ceramic and nanostructured materials and components applicable for SOFC devices reported by different researchers across the globe. More importance is given for the nanostructured materials and components developed for LTSOFC technology so far.

Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.503-511
    • /
    • 2022
  • In this article, we have examined the effect of fractional order parameter in a two-dimensional orthotropic magneto-thermoelastic solid in generalized thermoelasticity without energy dissipation with fractional order heat transfer in the context of hall current, rotation and two-temperature due to normal force. Laplace and Fourier transform techniques are used to obtain the solution of the problem. The expressions for displacement components, stress components, current density components and conductive temperature are obtained in transformed domain and then in physical domain by using numerical inversion method. The effect of fractional parameter on all the components has been depicted through graphs. Some special cases are also discussed in the present investigation.

저장조건과 포장재에 따른 야산더덕의 향기성분의 변화 (Change of Volatile Flavor Components of Codonopsis lanceolata Cultivated on a Wild Bill and Stored at Various Conditions)

  • 오혜숙;김준호;최무영
    • 한국지역사회생활과학회지
    • /
    • 제16권4호
    • /
    • pp.15-24
    • /
    • 2005
  • We investigated the changes of volatile flavor components from Codonopsis lanceolata, which were packed in woven polypropylene(WP) film or low density polyethylene(LDPE) film and stored for 15 and 30 days at refrigerated($2{\∼}4^{\circ}C$ ) or room($18{\∼}20^{\circ}C$) temperature. A hundred and sixty seven volatile flavor components in the fresh C. lanceolata were identified by GC/MS analysis. When determining the flavor components from C. lanceolata cultivated on a wild hill and stored at 4 conditions for 30days, six volatile components such as 1-hexadecene, 2,6-dimethyl-2-octanol, 2-methyl-2-dodecanol, $\alpha$-guaiene, $\delta$-cadinene and trans-2-hexen-1-ol were detected as common components of all stored samples, and The types of common flavor components of C. lanceolata were different according to storage conditions. The numbers were 16 from refrigerated, 7 from room temperature stored, and 10 components from WP or LDPE packed conditions, respectively. The total peak area ratio of the major 10 compounds were $52.0{\∼}86.8\%$, and the percentage of trans-2-hexen-1-ol, which was the only common compound among the major 10 components, was the highest as $26.4{\∼}68.1\%$ The major flavor profile, describe by highly trained panel, were green, aldehydic, earthy and camphoreous. As the result from sensory evaluation, the freshness of C. lanceolata was maintained better by controlling storage temperature rather than selection of package materials. The best condition for characteristic flavor of C. lanceolata was packing with LDPE and chilling.

  • PDF

3.5-Inch QCIF AMOLED Panels with Ultra-low-Temperature Polycrystalline Silicon Thin Film Transistor on Plastic Substrate

  • Kim, Yong-Hae;Chung, Choong-Heui;Moon, Jae-Hyun;Lee, Su-Jae;Kim, Gi-Heon;Song, Yoon-Ho
    • ETRI Journal
    • /
    • 제30권2호
    • /
    • pp.308-314
    • /
    • 2008
  • In this paper, we describe the fabrication of 3.5-inch QCIF active matrix organic light emitting display (AMOLED) panels driven by thin film transistors, which are produced by an ultra-low-temperature polycrystalline silicon process on plastic substrates. The over all processing scheme and technical details are discussed from the viewpoint of mechanical stability and display performance. New ideas, such as a new triple-layered metal gate structure to lower leakage current and organic layers for electrical passivation and stress reduction are highlighted. The operation of a 3.5-inch QCIF AMOLED is also demonstrated.

  • PDF

국산 원료잎담배의 착엽위치에 따른 향기성분 및 휘발성 성분의 변화 (Changes of Aroma and Volatile Components of Korean Leaf Tobaccos from a Different Stalk Positions)

  • 황건중;이문수;김정열
    • 한국연초학회지
    • /
    • 제27권1호
    • /
    • pp.127-133
    • /
    • 2005
  • This study was conducted to determine the aroma and volatile component changes from a different stalk positions of Korean flue-cured tobacco. Eight different stalk positions of flue-cured leaf tobaccos harvested in 2001 were used for this study. Thermal extraction method at two different treatment temperature($50\;amp;\;80^{\circ}C$) was applied for this experiment. Forty eight kinds of aroma and volatile components such as 2,4-heptadienal, hexadecane, 1-methyl-1H- pyridine, 2,5-dimethyl-1H-pyrrole were analyzed by using thermal extraction method. All of aroma and volatile components of leaf tobaccos were changed from a different stalk positions and treatment temperature. Leaf tobaccos in middle stalk position have a higher concentration of aroma and volatile components such as norsolanidione, 4-pyridinecarboxaldehyde, 4-methyl-4-OH-2-pentanone, acetic acid, propylene glycol, 1-methyl-2-pyrrolidinone, 2,5-dimethyl-1H-pyrrole. Also, Megastigmatrienone 1, 3-oxo-[alpha]­ionol, 6,10,14-trimethyl-2-pentadecanone, heptadecane, 6-methyl-2-isohexyl-l-heptene concentration were low in the middle stalk position and high in both bottom and upper position. Treatment temperature affected on the changes of many aroma and volatile components in leaf tobacco. Most of aroma and volatile components such as, 2,4-Heptadienal, dodecanoic methylester, famesol isomer and 3-acetylpyridine were sharply increased as increasing treatment temperature. This results can be used to estimate the aroma characteristics of cigarette blend using a different stalk position of leaf tobacco.

황색종 연초 건조중 황변기 온습도차가 잎담배 색상 및 화학성분에 미치는 영향 (EFFECT OF TEMPERATURE AND HUMIDITY ON THE LEAF COLOR AND CHEMICAL COMPONENTS DURING THE YELLOWING STAGE OF FLUE-CURING)

  • 황건중;석영선;이한석
    • 한국연초학회지
    • /
    • 제7권2호
    • /
    • pp.129-139
    • /
    • 1985
  • cent was carried out to study on the effect of temperature and humidity to chemical tobacco leaves during the yellowing stage. The results were follows : In the condition of high humidity and low temperature, yellowing time was delayed ; leaf color appeared lack clearness. In the higher temperature and the lower humidity during the yellowing stage : total sugar, reducing sugar and malic acid content were increased. Decomposition of nitrogenous components elevated in $38^{\circ}C$, 85%RH. Changes of total nitrogen content correlated with total curing time. Adecrease of linolenic acid with a corresponding increase of chlorogenic acid proceeded in the condition of low temperature and high humidity. In a view of tobacco quality by chemical components, the low temperature and high humidity during the yellowing stage decreased quality of tobacco leaves. It is considered to control of the proper condition of temperature and humidity during the yellowing.

  • PDF

4사이클 가솔린기관의 배기조성에 관한 연구 -$NO_{\chi}$의 비평형 계산- (Study on Exhaust Gas Composition in the Four Ctcle Gasoline Engind -Nonequilibrium Calculation of $NO_{\chi}$ -)

  • 이성열;오영일
    • 대한기계학회논문집
    • /
    • 제1권4호
    • /
    • pp.171-181
    • /
    • 1977
  • This paper is aiming at calculating NOx concentration, which is one of the harmhul components of emission from the gasoline engine, formed in the combustor through the presess of combustion. Instantaneous temperature and concentration of each components for each division can be determined by the solution of simulatneous equation of reaction equation and equation of energy conservation, inputting the estimated temperature with a considerably wide rage of temperature. After determining instantaneous temperature and instantanous concentration of each components, the nonequilibrium calculation is performed based on the reaction kinetics in order to determine NOx concentration. To summarize the result abtained from the above method ;through the passage of NO concentration, NO concentration is the highest in the first division and it is gradually decreasing through the following divisions In the final division, NO concentation is the lowest.

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

  • Lata, Parveen;Singh, Sukhveer
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.397-410
    • /
    • 2020
  • The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

폐온수 이용 제 2 종 흡수식 열펌프의 열역학적 설계해석 (Thermal Design Analysis of an Absorption Heat Transformer for using Waste Hot Water)

  • 강병하;김영인;이춘식
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.285-292
    • /
    • 1985
  • A computer program for thermal design analysis has been developed to predict the performance of an absorption heat transformer. The effects of temperature boost, cooling water temperature and effectiveness of components on the performance were investigated. Not only the detailed thermodynamic states such as temperatures, concentration of the solution, and mass flow rate at each point of the process but also the heat transfer rate in each component could be easily determined with given input parameters. The system's coefficient of performance (COP) was seen to increase with increased effectiveness of components, decreased temperature boost of hot water, and decreased cooling water temperature. Even though the COP increases with increased effectiveness of the components, the variation in the COP is not substantial above certain values of the effectiveness. A reference design point can be selected on this basis.

  • PDF

Interactions in a transversely isotropic new modified couple stress thermoelastic thick circular plate with two temperature theory

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • 제12권3호
    • /
    • pp.261-276
    • /
    • 2023
  • This article is an application of new modified couple stress thermoelasticity without energy dissipation in association with two-temperature theory. The upper and lower surfaces of the plate are subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of displacement components, conductive temperature, stress components and couple stress are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of two temperature is shown on the various components.