• 제목/요약/키워드: Component load Characteristic

검색결과 61건 처리시간 0.027초

해상 풍력발전기 기초의 안전율에 관한 설계기준 분석 연구 (Comparison of Design Strands for Safety Factor of Offshore Wind Turbine Foundation)

  • 장화섭;김호선;이경우;김만응
    • 대한토목학회논문집
    • /
    • 제32권2B호
    • /
    • pp.149-152
    • /
    • 2012
  • 본 연구는 해상풍력발전기 기초 설계에 사용되는 IEC 61400-3, DNV-OS-J101, GL Wind, EUROCODE, AASHTO 및 국내 설계기준의 설계방법 및 안전율의 정도를 비교, 분석함으로써, 국내에서 해상풍력발전기 기초 설계시 필요한 제반사항을 제공하고자 한다. 해상풍력발전기 기초 설계에 관한 국내외 설계기준을 분석한 결과 설계법은 크게 설계접근법, 하중저항 설계법, 허용응력설계법을 적용하고 있으며, 각 설계법에 따른 안전율 정도를 분석한 결과 하중저항계수 설계법과 설계접근법은 거의 유사한 수준의 안전율을 확보하고 있는 반면, 허용응력설계법에서는 다소 보수적인 안전율을 적용하고 있어 해상풍력발전기 기초의 경제적 설계를 위한 국내 설계기준 개발이 필요할 것으로 판단된다.

수계별 주요 유량 지점에 대한 강수량과 기저유출 기여도 분석 (Analysis of Baseflow Contribution to Streamflow at Several Flow Stations)

  • 최윤호;박윤식;류지철;이동준;김용석;최중대;임경재
    • 한국물환경학회지
    • /
    • 제30권4호
    • /
    • pp.441-451
    • /
    • 2014
  • Streamflow is typically divided into two components that are direct runoff and baseflow, it is required to analyze and estimate behaviors of those two flow components to understand watershed characteristics so that watershed management plan can be effective in pollutant reductions. Since pollutant load behaviors in a stream or river are variable by flow component behaviors, best management practices need to be applied in a watershed based on the pollutant load behaviors varying with flow components. Thus, baseflow behaviors were analyzed separating baseflow from streamflow data collected from fifteen streamflow gaging stations in the 4 major river watersheds which are the Han river, Nakdong river, Guem river, and Yeongsan Somjin river watersheds. Moreover, precipitation trends throughout the 4 River Systems were investigated, thus daily precipitation data were collected from sixty-five locations. The Hank river watershed displayed the largest precipitation (925.2 mm) in summer but the lowest precipitation (71.8 mm) in winter, indicating the watershed has the most fluctuating precipitation characteristic. While the precipitation trends in the Four River Systems varied, a distinct feature in baseflow trends was not found, moreover baseflow percentages to streamflow were typically greater than 50% in the Four River Systems. As shown in this study, it would be expected significant amount of pollutants could be contributed to the stream in the form of baseflow at the watershed.

외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구 (A Study on Robust and Precise Position Control of PMSM under Disturbance Variation)

  • 이익선;여원석;정성철;박건호;고종선
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

연료전지 전력 시스템의 모델링 (The Modeling of Power System with PEM fuel cell)

  • 한경희;이화진;이나영;장혜영;이병송;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.239-241
    • /
    • 2008
  • A powered system with fuel cell is regarded as a high current and low voltage source. Effects of the loads on the electrical power source are important to optimize the integrated power system. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Furthermore, the dynamics characteristic of the system is crucial to acquire performance in applications, particularly interactions between loads and the fuel cell system. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the dynamic models of power conversion system with a PEM fuel cell that includes the PEM fuel cell stack, DC/DC converter and associated controls is developed. Electric lads for the system are derived by using a power theory that separates a load current into active, reactive, distortion or a mixed current component. Dependency of the DC capacitor on the loads are analyzed.

  • PDF

자동차 클러치 다이어프램 스프링의 유한요소해석 및 최적설계 (Finite Element Analysis and Optimal Design of Automobile Clutch Diaphragm Spring)

  • 이춘열;채영석;권재도;남욱희;김태형
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1616-1623
    • /
    • 2000
  • A diaphragm spring is an important component of a clutch assembly, characteristics of which depends largely on that of a diaphragm spring. A diaphragm spring is subject to high stress concentration in driving condition, which frequently causes cracks and fracture around finger area. In this paper, behavior of a diaphragm spring is analysed by finite element method to calculate sensitivity of design parameters, which is used to perform optimal design of diaphragm spring shape. As an object function, hoop stresses are taken and minimized to improve durability. Characteristics of the diaphragm is used as equality constraint to maintain the original design purpose and sequential linear programming(SLP) is utilized as an optimization tool. With optimized design, it is verified that concentrated stress is decreased maintaining release load characteristic.

태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구 (Vibrational Characteristics of an End Beam of a Freight Cal- on the Taebaek Line)

  • 문경호;홍재성;이동형;서정원;함영삼
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.962-967
    • /
    • 2004
  • A bogie is the device that connects a car body and wheel sets of a rail vehicle. It is the critical component that determine:; the running safety, The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, ai)d r running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance an the running safety, A new design has been suggested to solve this problem by ROTEM company and it's performance has been tested in this paper. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the conventional bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one.

직접분사식 디젤기관에서 함산소성분(Butyl Ether) 및 EGR의 적용 (The Application of Oxygenated Component(Butyl Ether) and EGR in a DI Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.134-139
    • /
    • 2008
  • This research investigated variations of the engine performance and the exhaust emission characteristic of a direct injection diesel engine by fueling a commercial diesel fuel, which was blended with the di-ether group (butyl-ether: BE). The smoke emission reduced to 26% from the diesel engine with the blending fuel (diesel fuel 80 vol-% + BE 20 vol-%)at the full engine load of 2500 rpm compared to it with the diesel fuel only. The power, torque and brake specific energy consumption of the diesel engine showed very slight differences. The NOx emission from the diesel engine, however, with the blended fuel was higher than with the commercial diesel fuel only. By applying EGR method, as a counter plan of the NOx reduction, this research obtained reductions of the smoke and NOx emission at the same time from the diesel engine with the BE blended diesel fuel.

Real Weather Condition Based Simulation of Stand-Alone Wind Power Generation Systems Using RTDS

  • Park, Min-Won;Han, Sang-Geun;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권3호
    • /
    • pp.146-152
    • /
    • 2004
  • Cost effective simulation schemes for Wind Power Generation Systems (WPGS) considering wind turbine types, generators and load capacities have been strongly investigated by researchers. As an alternative, a true weather condition based simulation method using a real-time digital simulator (RTDS) is experimented in this paper for the online real-time simulation of the WPGS. A stand-alone WPGS is, especially, simulated using the Simulation method for WPGS using Real Weather conditions (SWRW) in this work. The characteristic equation of a wind turbine is implemented in the RTDS and a RTDS model component that can be used to represent any type of wind turbine in the simulations is also established. The actual data related to weather conditions are interfaced directly to the RTDS for the purpose of online real-time simulation of the stand-alone WPGS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme. The results also signify that the cost effective verification of efficiency and stability for the WPGS is possible by the proposed real-time simulation method.

지능형 로봇 발을 위한 6 축 힘/모멘트센서 개발 (Development of 6-axis force/moment sensor for an intelligent robot's foot)

  • 김갑순;신희준;허덕찬;윤정원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1097-1102
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for an intelligent robot's foot. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself. The applied forces and moments should be measured from a 6-axis force/moment sensor attached to a humanoid robot's foot(ankle). They in the published paper already have some disadvantage in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to be gotten similar the rated output under each rated load. So, the sensing elements of the 6-axis force/moment sensor should get lots of design variables. Also, the size of 6- axis force/moment sensor is very important for mounting to robot's foot. In this paper, a 6-axis force/moment sensor for perceiving forces and moments in a humanoid robot's foot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing elements (plate-beams) of the sensor were designed using FEM (Finite Element Method) analysis. Then, the 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from FEM analysis agree well with that from the characteristic test.

  • PDF

자동차용 엔진 마운트의 피로거동에 관한 연구 (Fatigue Characteristics of Engine Rubber Mount for Automotive)

  • 서창민;오상엽;박대규;장주호
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.45-53
    • /
    • 2009
  • In this study, Finite Element Analysis (FEA) was used to decide three kinds of material property of vibration proof rubber with the unique characteristic of non-linear and large deformation. As well, three types of hardness (Hs 50, 55, 60) were compared with the result of fatigue tests, fatigue life was able to be predicted. The request for fatigue life becomes strict more and more as increasing stress under conditions like a compaction, high load and high temperature for parts because it is main characteristics of rubber mount for automotive. Regarding to the fatigue life under dynamic deformation condition, it can be predicted as checking forced deformation extends and its frequency and its strain-life curve. As for material property tests of uniaxial tension test, uniaxial compression test, pure shear test, Ogden model was used for FEA by observing relations between stress and strain's rate as curve fitting. As a result of FEA, fatigue life for rubber mount was predicted and accorded well with the experimental data of fatigue test with hourglass specimens. In addition, its property of the predictable fatigue life method suggested in this study was accorded well with the experimental data by comparing the predicted fatigue life of FEA with the result of fatigue test for rubber component of engine rubber mount.