• 제목/요약/키워드: Component Performance

Search Result 3,612, Processing Time 0.035 seconds

Determination of Ethylenethiourea in Fruits (과실류에 잔류하는 Ethylenethiourea 분석)

  • Kim, Eun-Hee;Jang, Mi-Ra;Kim, Jin-A;Kim, Tae-Rang;Yook, Dong-Hyun;Hwang, In-Sook;Kim, Jung-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.277-281
    • /
    • 2011
  • A rapid and very sensitive high-performance liquid chromatography/atmospheric-pressure chemical-ionization mass spectrometry method to detect ethylenethiourea (ETU) fungicide residues in fruits was developed. Methylene chloride was used as the surface extraction solvent for the target component. Recovery rates improved when cysteine hydrochloride and sodium carbonate were added to product prior to fortification. The limits of detection and quantification were approximately 0.006 and 0.02 mg/kg, respectively, from mandarin oranges. Recoveries from mandarin oranges, oranges, bananas, and pears, spiked in the range of 0.05-0.5 mg/kg, averaged 80-100%. The proposed method was used to monitor the presence of ETU in commercial fruits purchased from different markets in Seoul, Korea. ETU was found in four orange peels and in three mandarin orange peel samples. The highest ETU residue levels were $73.6{\mu}g/kg$ and $29.8{\mu}g/kg$.

Construction of CORBA Object-Group Platform for Distributed Real-Time Service (분산 실시간 서비스를 위한 CORBA 객체그룹 플랫폼의 구축)

  • Kim, Myung-Hee;Joo, Su-Chong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.602-613
    • /
    • 2001
  • Recently, the computing has developing in distributed object computing environment for supporting a programming paradigm of distributed application requiring interoperability between heterogeneous clients and servers. It involves the complex networking and the object-oriented technologies for various multimedia application service. In this paper, we construct the real-time object group platform for solving the difficulties of managements of distributed objects and the real-time constraints by requiring for real-time service supporting of applications in distributed computing environment. The existing researches are being tried to only improving the performance of systems by using real-time CORBA itself, or modifying the part of CORBA compliance. Hence, we design a new model of real-time object group platform that can support the real-time requirement without modifying the ORB. The structure of our real-time object group analyzed and defined the requirement about object management and real-time application service sides. And the role of the components of real-time object group is divided into 2 classes for reducing the side effect of interoperability between management and service. Also, we considered how to transparently express the parameters of real-time properties for clients and developers of server's service objects. If the expression of real-time parameters is transparent, then the developer can easily extend the real-time parameters simply and flexibly. Therefore, in this paper we defined the role of components of platform and described functions of each component and designed and then implemented the real-time object group platform. Finally, we showed the execution procedures of implemented our platform for verifying the functionality.

  • PDF

Three-Dimensional Approaches in Histopathological Tissue Clearing System (조직투명화 기술을 통한 3차원적 접근)

  • Lee, Tae Bok;Lee, Jaewang;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • Three-dimensional microscopic approaches in histopathology display multiplex properties that present puzzling questions for specimens as related to their comprehensive volumetric information. This information includes spatial distribution of molecules, three-dimensional co-localization, structural formation and whole data set that cannot be determined by two-dimensional section slides due to the inevitable loss of spatial information. Advancement of optical instruments such as two-photon microscopy and high performance objectives with motorized correction collars have narrowed the gap between optical theories and the actual reality of deep tissue imaging. However, the benefits gained by a prolonged working distance, two-photon laser and optimized beam alignment are inevitably diminished because of the light scattering phenomenon that is deeply related to the refractive index mismatch between each cellular component and the surrounding medium. From the first approaches with simple crude refractive index matching techniques to the recent cutting-edge integrated tissue clearing methods, an achievement of transparency without morphological denaturation and eradication of natural and fixation-induced nonspecific autofluorescence out of real signal are key factors to determine the perfection of tissue clearing and the immunofluorescent staining for high contrast images. When performing integrated laboratory workflow of tissue for processing frozen and formalin-fixed tissues, clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue hydrogel (CLARITY), an equipment-based tissue clearing method, is compatible with routine procedures in a histopathology laboratory.

Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks (서베일런스 네트워크에서 패턴인식 기반의 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • This paper proposes algorithm to reduce the computing time in a neural network that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. Object Detection can be defined as follows : Given image sequence, which can forom a digitalized image, the goal of object detection is to determine whether or not there is any object in the image, and if present, returns its location, direction, size, and so on. But object in an given image is considerably difficult because location, size, light conditions, obstacle and so on change the overall appearance of objects, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact object detection which overcomes some restrictions by using neural network. Proposed system can be object detection irrelevant to obstacle, background and pose rapidly. And neural network calculation time is decreased by reducing input vector size of neural network. Principle Component Analysis can reduce the dimension of data. In the video input in real time from a CCTV was experimented and in case of color segment, the result shows different success rate depending on camera settings. Experimental results show proposed method attains 30% higher recognition performance than the conventional method.

The Neuroanatomy and Psychophysiology of Attention (집중의 신경해부와 정신생리)

  • Lee, Sung-Hoon;Park, Yun-Jo
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.2
    • /
    • pp.119-133
    • /
    • 1998
  • Attentional processes facilitate cognitive and behavioral performance in several ways. Attention serves to reduce the amount of information to receive. Attention enables humans to direct themselves to appropriate aspects of external environmental events and internal operations. Attention facilitates the selection of salient information and the allocation of cognitive processing appropriate to that information. Attention is not a unitary process that can be localized to a single neuroanatomical region. Before the cortical registration of sensory information, activation of important subcortical structures occurs, which is called as an orienting response. Once sensory information reaches the sensory cortex, a large number of perceptual processes occur, which provide various levels of perceptual resolution of the critical features of the stimuli. After this preattentional processing, information is integrated within higher cortical(heteromodal) systems in inferior parietal and temporal lobes. At this stage, the processing characteristics can be modified, and the biases of the system have a direct impact on attentional selection. Information flow has been traced through sensory analysis to a processing stage that enables the new information to be focused and modified in relation to preexisting biases. The limbic and paralimbic system play significant roles in modulating attentional response. It is labeled with affective salience and is integrated according to ongoing pressures from the motivational drive system of the hypothalamus. The salience of information greatly influences the allocation of attention. The frontal lobe operate response selection system with a reciprocal interaction with both the attention system of the parietal lobe and the limbic system. In this attentional process, the search with the spatial field is organized and a sequence of attentional responses is generated. Affective, motivational and appectitive impulses from limbic system and hypothalamus trigger response intention, preparation, planning, initiation and control of frontal lobe on this process. The reticular system, which produces ascending activation, catalyzes the overall system and increases attentional capacity. Also additional energetic pressures are created by the hypothalamus. As psychophysiological measurement, skin conductance, pupil diameter, muscle tension, heart rate, alpha wave of EEG can be used. Event related potentials also provide physiological evidence of attention during information process. NI component appears to be an electrophysiological index of selective attention. P3 response is developed during the attention related to stimulus discrimination, evaluation and response.

  • PDF

Effect of Annealing Temperature on the Anode Properties of TiO2 Nanotubes for Rechargeable Lithium Batteries (열처리 온도에 따른 TiO2 나노튜브의 리튬이차전지 음전극 특성)

  • Choi, Min Gyu;Kang, Kun Young;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • $TiO_2$ nanotubes are prepared from rutile prticles via an alkaline hydrothermal synthesis and the consequent heat treatment at $300{\sim}500^{\circ}C$. The physical and electrochemical properties of the $TiO_2$ nanotubes are characterized for use as a anode material of rechargeable lithium battery. In particular, the microscale dusts as an impurity component occurred in the purification step after the hydrothermal reaction are completely removed to yield $TiO_2$ nanotube with a higher specific surface area and more obvious crystalline phases. As the annealing temperature increases, the specific surface area is slightly decreased due to some aggregation between the isotropically dispersed nanotubes. Highest initial discharge capacity of 250 mAh $g^{-1}$ is achieved for the $TiO_2$ nanotube annealed at $300^{\circ}C$, whereas the $400^{\circ}C$ $TiO_2$ nanotube shows the superior cycle performance and high-rate capability.

Study of NIR in-line Monitoring of Physicochemical Changes during the Crystallization Process of Aspirin (Aspirin 결정화 과정 중 특성변화의 NIR 인라인 모니터링 연구)

  • Lee, Hea-Eun;Wang, In-Chun;Lee, Min-Jeong;Seo, Da-Young;Shin, Sangmun;Choi, Yongsun;Choi, Guang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Since the quality and performance of medicinal products are heavily dependent upon the size, shape and polymorphism of active pharmaceutical ingredients(APIs), their crystallization has been regarded as one of the most important pharmaceutical processes. In this study, NIR-based inline measurements were employed to monitor key attributes of API particles real-time during the crystallization process. Principal component analysis(PCA) method was selected to correlate inline NIR spectra while the well-known aspirin was studied as a model drug. According to our characterization results, the ratio of ethanol to acetone did not cause any change in polymorphism, but resulted in a significant difference in the nucleation time, crystal growth and crystal shape. These phenomenological changes were well correlated with the PCA's implications. It turned out that the NIR-based inline monitoring technology can be employed well in observing and predicting key quality attributes such as crystal size during pharmaceutical crystallization processes.

Design of Brushless Permanent Machine with Skewed Stator for Electrical Power Steering System (전동 조향 장치용 브러쉬리스 영구자석 전동기의 스테이터 스큐 설계)

  • Lee, Choong-Sung;Jung, Kyung-Tae;Hong, Jung-Pyo;Kim, Hae-Joong;Kim, Young-Kyun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.189-197
    • /
    • 2015
  • As enforced the regulation of fuel efficiency, the electrification of automotive components in internal combustion vehicle has been applied instead of hydraulic pressure. A typical example of such parts is the EPS (electric power steering), and it is applied to most automotive at present. In electric power steering system, the core component is motor. The reduction of cogging torque and torque ripple is required to improve steering feeling and reduce NVH (Noise Vibration Harshness) in EPS. Generally the skewed design of stator or rotor is applied in order to reduce cogging torque and torque ripple. This paper propose the design and analysis methodology of Brusheless PMSM (Permanent Magnet Synchronous Motor) which is applied to skewed stator. The proposed methodology is as follows: First Intial Design PMSM with skewed stator for EPS, Second Optimal design using RSM (Response surface method), Third Performance Analysis such as Phase Back EMF, Inductance, Load torque using FEA (Finite Element Method). Finally, the reliability of proposed design methodology will be verified through the experiments of prototype sample.

Characteristics of Spray Deposit Pattern and Flow Rate in the Air-Center Nozzle System (Air-center nozzle의 분무살포도(噴霧撒布度)와 분무량(噴霧量)의 특성(特性))

  • Lee, Sang Woo;Hur, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.156-168
    • /
    • 1980
  • The air-center nozzles, being specially designed to supply air into the central part of water stream at seven levels of air volume, were tested for spray deposit pattern and flow-rate at each of the twelve pressure levels ranging from $0.35kg/cm^2$ (5 psi) to $6.33kg/cm^2$ (90 psi) in comparison with those of standard nozzles. The air-center nozzles produced comparatively more stable spray deposit patterns than the standard nozzles. The spray deposit patterns of the air-center nozzle were concentrated gradually in the central region with increase of air volume as a component of spray mixture. The degree of concentration of spray deposit on the central region from the air-center nozzle was higher than that of the standard nozzle, which suggested the possibility of obtaining farther travel distance spraying system at a given performance level. The flow rate of the air-center nozzle was not as much as that of the standard nozzle due to the air within certain limits. The rate of decrease of water flow became smaller with an increase in operating pressure although it changed rapidly in the beginning stage, ranging up to two or three percent of the air flow rate due to the compressive properties of air.

  • PDF

Separation of Waste TNT and RDX Mixture Using SMB Process (SMB 공정을 이용한 폐기 TNT와 RDX 혼합 용액의 분리)

  • Oh, Donghoon;Kim, Sunhee;Lee, Keundeuk;Ahn, Iksung;Lee, Chang-Ha
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.163-171
    • /
    • 2017
  • Currently, researches on recycling and reuse of waste energetic materials have recently gained a great attention from advanced countries due to ever tightening environmental regulations. In this study, as a part of a recycling technology, the experiments and dynamic simulation of simulated moving bed (SMB) process were performed to efficiently separate TNT and RDX from their mixture, which are main components of ammunition. In order to determine the operation zone of SMB process, the retention times of TNT and RDX were measured using HPLC at different flow rates and the adsorption equilibrium of each component was obtained by using a moment method. According to the adsorption equilibrium and the triangle theory of SMB process, four operation points were determined and separation experiments were carried out by the SMB process using the solvent consisting of acetonitrile and water. Two different mixing ratios (6:4 and 1:1) of acetonitrile and water were chosen for the experiment due to the great impact of mixing ratio of the solvent on separation. The performance of SMB process was evaluated by purity, recovery, productivity and solvent consumption. Pure TNT and RDX were successfully obtained from the SMB process and the dynamic simulation for the SMB process agreed well with the experimental results. Therefore, the dynamic model could be applied for predicting the dynamic behavior of the SMB process and designing a large scale SMB process.