• Title/Summary/Keyword: Compliance structure

Search Result 206, Processing Time 0.033 seconds

Structural Analysis and Dynamic Design Optimization of a High Speed Multi-head Router Machine (다두 Router Machine 구조물의 경량 고강성화 최적설계)

  • 최영휴;장성현;하종식;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.902-907
    • /
    • 2004
  • In this paper, a multi-step optimization using a G.A. (Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a 5-head route machine. Our design procedure consist of two design optimization stage. The first stage of the design optimization is static design optimization. The following stage is dynamic design optimization stage. In the static optimization stage, the static compliance and weight of the structure are minimized simultaneously under some dimensional constraints and deflection limits. On the other hand, the dynamic compliance and the weight of the machine structure are minimized simultaneously in the dynamic design optimization stage. As the results, dynamic compliance of the 5-head router machine was decreased by about 37% and the weight of the structure was decreased by 4.48% respectively compared with the simplified structure model.

  • PDF

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm (금형가공센터 고속 이송체의 최적설계)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF

A Compliance Control Method for Robot Hands with Consideration of Decoupling among Fingers/Joints (손가락/관절 간의 기구학적 독립을 고려한 로봇 손의 컴플라이언스 제어 방법)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.568-577
    • /
    • 2000
  • In this paper for an object grasped by a robot hand to work in stiffness control domain we first investigate the number of fingers for successful stiffness modulation in the object operational space. Next we propose a new compliance control method for robot hands which consist of two steps. RIFDS(Resolved Inter-Finger Decoupling Solver) is to decompose the desired compliance characteristic specified in the op-erational space into the compliance characteristic in the fingertip space without inter-finger coupling and RIJDS(Resolved Inter-Joint Decoupling Solver) is to decompose the fingertip space without inter-finger coupling and RIJDS(Resolved inter-Joint Decoupling Solver) is to decompose the compliance characteristic in the finger-tip space into the compliance characteristic given in the joint space without inter-joint coupling. Based on the analysis results the finger structure should be biominetic in the sense that either kniematic redundancy or force redundancy are required to implement the proposed compliance control scheme, Five-bar fingered robot hands are used as an illustrative example to implement the proposed compliance control method. To show the effectiveness of the proposed compliance control method simulations are performed for two-fingered and three-fingered robot hands.

  • PDF

Static Compliance Analysis & Multi-Objective Optimization of Machine Tool Structures Using Genetic Algorithm(I) (유전자 알고리듬을 이용한 공자기계구조물의 정강성 해석 및 다목적 함수 최적화(I))

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.443-448
    • /
    • 2000
  • In this paper, multiphase optimization of machine structure is presented. The goal of first step is to obtain (i) light weight, (ii) rigidity statically. In this step, multiple optimization problem with two objective functions is treated using Pareto Genetic Algorithm. Where two objective functions are weight of the structure, and static compliance. The method is applied to a new machine structure design.

  • PDF

A Comparative Study on the Static and Dynamic Stiffness Evaluation Methods of Machine Tool Structure (공작기계 구조물의 정ㆍ동강성 평가방법에 관한 연구)

  • 최영휴;강영진;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.46-50
    • /
    • 2002
  • In other to evaluate the static and dynamic stiffness of machine tool structure, the accuracy and error from experimental methods are studied in this paper. The F.E.M., impulse tests and exciter tests are performed for the general simple structure whose exact solution can be obtained. So that the parameter and dynamic compliance can be got. From the result, the variation of natural frequency can be verified from the static preload. Further more the relationship of identify and difference for compliance and direction is presented in the exciting direction and measurement direction.

  • PDF

Structural Design Optimization of a Wafer Grinding Machine for Lightweight and Minimum Compliance Using Genetic Algorithm (유전자 알고리듬 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 경량 고강성화 최적설계)

  • Park H.M.;Choi Y.H.;Choi S.J.;Ha S.B.;Kwak C.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.81-85
    • /
    • 2005
  • In this paper, the structural design optimization of a wafer grinding machine using a multi-step optimization with genetic algorithm is presented. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints. The first design step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted among those good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a high precision wafer grinding machine. After optimization, both static and dynamic compliances are reduced more than $92\%\;and\;93\%$ compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

  • PDF

Study on Precison Assembly Macchanism Using Joint Compliances (관절 콤플라이언스를 활용한 정밀 조립형 메카니즘에 관한 연구)

  • 김동구;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.395-400
    • /
    • 1994
  • Most of Commercial Remote Center Compliance(RCC) devices have been designed using deformable structures. In this work, we propose another type of assembly devices which generate the compliance effects by attaching the compliances (or spring) at the joints of the given mechainsm. The compliance models are derived for a serial-type, parallel-type, and hybrid-type mechanisms, respectively. In particular, a planar three-degree of freedom parallel structure is shown to have RCC points at the center of the workspace for its symmetric configuratings.

  • PDF