• Title/Summary/Keyword: Complexity Mitigation

Search Result 35, Processing Time 0.023 seconds

A Study on the Relationship between Air Traffic Controllers' Safety Culture and Their Complex Mitigation Strategies: Using a Safety Culture Measurement Tool with Intrinsic and Extrinsic Levels (항공교통관제사의 안전문화와 업무복잡성 완화전략의 관계성 연구: 안전문화의 내재적 및 외재적 수준 측정도구를 활용하여)

  • Jeon, Jong-Duk;Lee, Nam-Ryung;Kim, Geun-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.22-33
    • /
    • 2020
  • Due to recent increased air traffic,, air traffic controllers in charge of en-route and approach control have faced huge increase in both workload and its intensity. The purpose of this paper is to analyze how much safety culture of air traffic controllers has effect on their complexity mitigation strategies during their duties. It could be expected complexity mitigation improve air traffic flow resulting in enhancing safety eventually. According to empirical analysis against air traffic controllers in civil aviation and air force in South Korea, it was proven safety culture had a statistically positive effect on complex mitigation strategies through safety behavior. In safety culture among air traffic controllers, intrinsic culture had a positive effect on extrinsic value of safety culture. Intrinsic value of safety culture led to air traffic controllers' safety behavior which created work complexity mitigation strategies. Among work complexity mitigation strategies, communication and cooperation was proven to be the most important factor effected by safety culture and behavior. It was implied that enhancing the intrinsic values of safety culture would cause to improve extrinsic safety culture and air traffic controller's work efficiency.

Low-Complexity MIMO Detection Algorithm with Adaptive Interference Mitigation in DL MU-MIMO Systems with Quantization Error

  • Park, Jangyong;Kim, Minjoon;Kim, Hyunsub;Jung, Yunho;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.210-217
    • /
    • 2016
  • In this paper, we propose a low complexity multiple-input multiple-output (MIMO) detection algorithm with adaptive interference mitigation in downlink multiuser MIMO (DL MU-MIMO) systems with quantization error of the channel state information (CSI) feedback. In DL MU-MIMO systems using the imperfect precoding matrix caused by quantization error of the CSI feedback, the station receives the desired signal as well as the residual interference signal. Therefore, a complexMIMO detection algorithm with interference mitigation is required for mitigating the residual interference. To reduce the computational complexity, we propose a MIMO detection algorithm with adaptive interference mitigation. The proposed algorithm adaptively mitigates the residual interference by using the maximum likelihood detection (MLD) error criterion (MEC). We derive a theoretical MEC by using the MLD error condition and a practical MEC by approximating the theoretical MEC. In conclusion, the proposed algorithm adaptively performs interference mitigation when satisfying the practical MEC. Simulation results show that the proposed algorithm reduces the computational complexity and has the same performance, compared to the generalized sphere decoder, which always performs interference mitigation.

A Study for Co-channel Interference Mitigation in WBAN System (WBAN 환경에서 Co-channel 간섭 제거를 위한 연구)

  • Choi, W.S.;Kim, J.G.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • In this paper, we analyze that co-channel interference mitigation algorithms MMSE (Minimum Mean Square Error), OC (Optimal Combining), ML (Maximum Likelihood) using 2.4Ghz in WBAN (Wireless Body Area Network) system. Also analyze that scenario and channel model by IEEE 802.15.6. ML gives the best performance for all simulation. ML and OC have high complexity than MMSE complexity, because these algorithms should be known channel information of interference users. So these algorithms are difficult to apply to WBAN. Therefore we will study the interference mitigation algorithm that should be accomplished trade-off of between efficiency and complexity.

Optimum Locations of Passe Conductor Loops for Magnetic Field Mitigation of Transmission Line using GA (유전 알고리듬을 이용한 송전선로 자계 저감용 도체루프의 최적 위치 선정)

  • Shin Myong-Chul;Kim Jong-Hyung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.234-241
    • /
    • 2005
  • The performance of passive conductor loop (hereinafter 'loop') method which is used to mitigate the magnetic field around overhead power transmission line is dependent on its configuration and installed location, which are affected by installation conditions of the loops such as objective areas and levels of magnetic field mitigation. Thus, because the design problem of loops is difficult and cumbersome by variety of their configuration and complexity of magnetic coupling mechanism, it is need to be formulated as a computer-based optimum problem to determine the most effective and reasonable loop model satisfying the installation conditions. In this paper, the optimum locations of the multi-wired multiple loops including series reactance compensations are searched by using the genetic algorithm (GA) to mitigate effectively the magnetic fields of relatively near points or far points from transmission line at Am height, and the magnetic fields mitigation characteristics of each loop are analyzed in the view of magnitude, direction and phase of cancellation fields by polarized vector concept to identify their adequacy and rationality for the installation objectives.

Radio Resource Management Algorithm for Uplink Coordinated Cooperative Spatial Multiplexing (셀 간 협동 CSM에서 상향 링크 용량 개선을 위한 자원 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1311-1317
    • /
    • 2010
  • In this paper, for a uplink space division multiple access system named cooperative spatial multiplexing(CSM), radio resource management(RRM) algorithms are proposed based on sharing uplink channel information among a serving base station(BS) and interfering BSs in a uplink coordinated wireless communication system. A constrained maximum transmit power algorithm is proposed for mobile station(MS) to limit uplink inter-cell interference(ICI). And joint scheduling algorithm among coordinated BSs is proposed to enhance uplink capacity through ICI mitigation by using channel information from interfering BSs. It is shown that the proposed RRM algorithm provides a considerable uplink capacity enhancement by effective ICI mitigation only with moderate complexity.

An Unambiguous Multipath Error Mitigation Scheme for TMBOC and CBOC Signals (TMBOC과 CBOC 신호에 적합한 모호성이 낮은 다중경로 오차완화 기법)

  • Yoo, Seung-Soo;Jee, Gyu-In;Kim, Sun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.977-987
    • /
    • 2012
  • One of the most significant errors in the pseudo-range measurement performance of GNSSes (Global Navigation Satellite Systems) is their multipath error for high-precision applications. Several schemes to mitigate this error have been studied. Most of them, however, have been focused on the GPS (Global Positioning System) L1 C/A (Coarse/Acquisition) signal that was designed in the 1970s and is still being used for civil navigation. Recently, several modernized signals that were especially conceived to more significantly mitigate multipath errors have been introduced, such as Time Multiplexed and Composite Binary Offset Carrier (TMBOC and CBOC, respectively) signals. Despite this advantage, however, a problem remains with the use of TMBOC and CBOC modulations: the ambiguity of BOC (Binary Offset Carrier)-modulated signal tracking. In this paper, a novel unambiguous multipath error mitigation scheme for these modernized signals is proposed. The proposed scheme has the same complexity as HRCs (High Resolution Correlators) but with low ambiguity. The simulation results showed that the proposed scheme outperformed or performed at par with the HRC in terms of their multipath error envelopes and running averages in the static and statistical channel models. The ranging error derived by the mean multipath error of the proposed scheme was below 1.8 meters in an urban area in the statistical channel model.

Scenario Analysis Technology for Flood Risk Management in the Taihu Basin

  • Changwei, Hu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.140-148
    • /
    • 2010
  • The Taihu Basin is located in the east coast of China, where the threats of frequent floods have induced construction of massive, complex, hierarchical flood defense systems over the interconnected river networks. Digital modeling of flooding processes and quantitative damage assessment still remain challenging due to such complexity. The current research uses an integrated approach to meet this challenge by combining multiple types of models within a GIS platform. A new algorithm is introduced to simulate the impacts of the flood defense systems, especially the large number of polders, on floods distributions and damages.

  • PDF

Interference Mitigation Receiver for Control Channel Region in LTE-A (LTE-A 제어 채널 영역에 대한 간섭 제어 수신기)

  • Hwnag, Jin-Yup;Jung, Man Young;Lee, Sang-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.903-910
    • /
    • 2016
  • This paper investigates an advanced receiver for interference mitigation of downlink control channel in the 3GPP Rel-13 standard. There are several features for downlink throughput performance improvement with inter-cell interference management such as network coordination and advanced receivers during Rel-10~Rel-12. These features can be operated always under the assumption that UE perfectly decodes control channels (PCFICH and PDCCH) of serving cell. However, the performance of control channels could be deteriorated in the cell edge region due to inter-cell interference. In this paper, we introduce the advanced receivers and analyze performance for control channel interference mitigation (CCIM) based on 3GPP Rel-13 standard. Additionally, we propose UE behavior depending on network condition.

Remembering Disasters: the Resilience Approach

  • le Blanc, Antoine
    • The Journal of Art Theory & Practice
    • /
    • no.14
    • /
    • pp.217-245
    • /
    • 2012
  • The aim of this paper is to show how the paradigm of disaster resilience may help reorienting urban planning policies in order to mitigate various types of risks, thanks to carefully thought action on heritage and conservation practices. Resilience is defined as the "capacity of a social system to proactively adapt to and recover from disturbances that are perceived within the system to fall outside the range of normal and expected disturbances." It relies greatly on risk perception and the memory of catastrophes. States, regions, municipalities, have been giving territorial materiality to collective memory for centuries, but this trend has considerably increased in the second half of the 20th century. This is particularly true regarding the memory of disasters: for example, important traces of catastrophes such as urban ruins have been preserved, because they were supposed to maintain some awareness and hence foster urban resilience - Berlin's Gedachtniskirche is a well-known example of this policy. Yet, in spite of preserved traces of catastrophes and various warnings and heritage policies, there are countless examples of risk mismanagement and urban tragedies. Using resilience as a guiding concept might change the results of these failed risk mitigation policies and irrelevant disaster memory processes. Indeed, the concept of resilience deals with the complexity of temporal and spatial scales, and with partly emotional and qualitative processes, so that this approach fits the issues of urban memory management. Resilience might help underlining the complexity and the subtlety of remembrance messages, and lead to alternative paths better adapted to the diversity of risks, places and actors. However, when it is given territorial materiality, memory is almost always symbolically and politically framed and interpreted; Vale and Campanella had already outlined this political aspect of remembrance and resilience as a discourse. Resilience and the territorialization of memory are not ideologically neutral, but urban risk mitigation may come at that price.

  • PDF

Interference-limited Resource Allocation Algorithm in Cognitive Heterogeneous Networks

  • Zhuang, Ling;Yin, Yaohu;Guan, Juan;Ma, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1471-1488
    • /
    • 2018
  • Interference mitigation is a significant issue in the cognitive heterogeneous networks, this paper studied how to reduce the interference to macrocell users (MU) and improve system throughput. Establish the interference model with imperfect spectrum sensing by analyzing the source of interference complexity. Based on the user topology, the optimize problem was built to maximize the downlink throughput under given interference constraint and the total power constraint. We decompose the resource allocation problem into subcarrier allocation and power allocation. In the subcarrier assignment step, the allocated number of subcarriers satisfies the requirement of the femtocell users (FU).Then, we designed the power allocation algorithm based on the Lagrange multiplier method and the improved water filling method. Simulation results and performance analyses show that the proposed algorithm causes less interference to MU than the algorithm without considering imperfect spectrum sensing, and the system achieves better throughput performance.