• Title/Summary/Keyword: Complex sensor device

Search Result 63, Processing Time 0.028 seconds

The Development of the Wind Speed Measurement System using Deacon Equation Algorithm (Deacon 방정식 알고리즘을 적용한 풍속 측정 장치 개발)

  • Kim, Sang-Man;Moon, Chae-Joo;Jeong, Moon-Seon;Park, Byeong-Ju;Lee, Kyung-Sung;Park, Ji-Ye
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.213-216
    • /
    • 2011
  • The feasibility study must be conducted for construction of complex for generation of electric power such as items to get permission and grid connection etc. including wind resource to construct a complex for wind power generation. Since wind power can be used by converting only around 20~40% of energy coming in that kinetic energy of wind passes through blades and driving device into electric energy, when constructing a complex, the survey of wind resource takes up the most important part. Data logger used to measure this wind energy are expressed by calculating generally electromotive that is created from a sensor, variable-type, pulse-type signal to be proper for the actual value, and most data loggers have a type without considering geographical features. Besides, in the case of Met mast that is installed to survey the wind resource, since it is installed lower than the hub height of a wind power generator due to permission matters and the economic factors, the height of wind speed by utilizing Deacon equation is compensated to revise this. In this study, a device measuring wind speed was made by using algorithm that is possible to compensate the height of wind speed according to regional features and by applying Deacon equation, and the function of data storage through SD card or RS232 communication was added as well. Besides it's possible to check data more easily with a type of graph by using LCD touch screen for the convenience of users.

  • PDF

Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System (다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

Augmented Reality (AR)-Based Sensor Location Recognition and Data Visualization Technique for Structural Health Monitoring (구조물 건전성 모니터링을 위한 증강현실 기반 센서 위치인식 및 데이터시각화 기술)

  • Park, Woong Ki;Lee, Chang Gil;Park, Seung Hee;You, Young Jun;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • In recent years, numerous mega-size and complex civil infrastructures have been constructed worldwide. For the more precise construction and maintenance process management of these civil infrastructures, the application of a variety of smart sensor-based structural health monitoring (SHM) systems is required. The efficient management of both sensors and collected databases is also very important. Recently, several kinds of database access technologies using Quick Response (QR) code and Augmented Reality (AR) applications have been developed. These technologies provide software tools incorporated with mobile devices, such as smart phone, tablet PC and smart pad systems, so that databases can be accessed very quickly and easily. In this paper, an AR-based structural health monitoring technique is suggested for sensor management and the efficient access of databases collected from sensor networks that are distributed at target structures. The global positioning system (GPS) in mobile devices simultaneously recognizes the user location and sensor location, and calculates the distance between the two locations. In addition, the processed health monitoring results are sent from a main server to the user's mobile device, via the RSS (really simple syndication) feed format. It can be confirmed that the AR-based structural health monitoring technique is very useful for the real-time construction process management of numerous mega-size and complex civil infrastructures.

Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm (C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발)

  • Park, Myung-Wook;Moon, Hee-Chang;Kim, Jung-Ha;Crane III, Carl D.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.

Studies on the Impedance-Hymidity Characteristics of $TiO_2$-$V_2O_5$ Humidity Sensor ($TiO_2$-$V_2O_5$ 습도감지소자의 감습특성에 관한 연구)

  • 박재환;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.529-535
    • /
    • 1990
  • This paper describes the factors which control the impedance-relative humidity characteristics of the TiO2-V2O5 humidity sensor. To obtain the quantitative relationships between impedance and many manufacturing parameters such as V2O5mol%, the sintering time and temperature, various sets of samples are preared and tested. With changing relative hymidity from 20% to 80%, it is measrued that the corresponding capacitance and impedance from the semicircles which complex impedance plots make. As a result we found that the impedance-relative humidity characteristics are mainly controlled by the doping amount of V2O5 total pore volume and bulk resistence of the elements. We can assume the equivalent circuits of each samples and finally control the sintering time to get a linear humidity impedance response curve which plays an important role in device making. 4mol% V2O5-TiO2 specimen sintered at 90$0^{\circ}C$ for 10min. show liear log(Z) vs. RH characteristics and 10mol% V2O5-TiO2 specimen sintered at the same temp. for 20min. show linear (Z) vs. RH.

  • PDF

X-ray grayscale lithography for sub-micron lines with cross sectional hemisphere for Bio-MEMS application (엑스선 그레이 스케일 리소그래피를 활용한 반원형 단면의 서브 마이크로 선 패턴의 바이오멤스 플랫폼 응용)

  • Kim, Kanghyun;Kim, Jong Hyun;Nam, Hyoryung;Kim, Suhyeon;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.170-174
    • /
    • 2021
  • As the rising attention to the medical and healthcare issue, Bio-MEMS (Micro electro mechanical systems) platform such as bio sensor, cell culture system, and microfluidics device has been studied extensively. Bio-MEMS platform mostly has high resolution structure made by biocompatible material such as polydimethylsiloxane (PDMS). In addition, three dimension structure has been applied to the bio-MEMS. Lithography can be used to fabricate complex structure by multiple process, however, non-rectangular cross section can be implemented by introducing optical apparatus to lithography technic. X-ray lithography can be used even for sub-micron scale. Here in, we demonstrated lines with round shape cross section using the tilted gold absorber which was deposited on the oblique structure as the X-ray mask. This structure was used as a mold for PDMS. Molded PDMS was applied to the cell culture platform. Moreover, molded PDMS was bonded to flat PDMS to utilize to the sub-micro channel. This work has potential to the large area bio-MEMS.

AIoT-based High-risk Industrial Safety Management System of Artificial Intelligence (AIoT 기반 고위험 산업안전관리시스템 인공지능 연구)

  • Yeo, Seong-koo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.168-170
    • /
    • 2022
  • The government enacted and promulgated the 'Severe Accident Punishment Act' in January 2021, and is enforcing the law for workplaces with 50 or more full-time workers. However, the number of industrial accident accidents in 2021 increased by 10.7% compared to the same period of the previous year, and chemical gas Safety accidents due to leaks and explosions also occur frequently. Therefore, in high-risk industrial sites, comprehensive Safety measures are urgently needed. In this study, BLE Mesh networking in industrial sites with poor communication environment apply technology. The complex sensor AIoT device recognizes a dangerous situation as a gas sensing value, voice, and motion value, and transmits it to the server. The server monitors the risk situation in real time through information value analysis and judgment through artificial intelligence LSTM algorithm and CNN algorithm for AIoT transmission information. Through this study, through the development of AIoT devices capable of gas sensing, voice and motion recognition, and AI-applied safety management systems, It will contribute to the expansion of the social safety net by expanding its application.

  • PDF

Development of Three-Dimensional Deformable Flexible Printed Circuit Boards Using Ag Flake-Based Conductors and Thermoplastic Polyamide Substrates

  • Aram Lee;Minji Kang;Do Young Kim;Hee Yoon Jang;Ji-Won Park;Tae-Wook Kim;Jae-Min Hong;Seoung-Ki Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.420-426
    • /
    • 2024
  • This study proposes an innovative methodology for developing flexible printed circuit boards (FPCBs) capable of conforming to three-dimensional shapes, meeting the increasing demand for electronic circuits in diverse and complex product designs. By integrating a traditional flat plate-based fabrication process with a subsequent three-dimensional thermal deformation technique, we have successfully demonstrated an FPCB that maintains stable electrical characteristics despite significant shape deformations. Using a modified polyimide substrate along with Ag flake-based conductive ink, we identified optimized process variables that enable substrate thermal deformation at lower temperatures (~130℃) and enhance the stretchability of the conductive ink (ε ~30%). The application of this novel FPCB in a prototype 3D-shaped sensor device, incorporating photosensors and temperature sensors, illustrates its potential for creating multifunctional, shape-adaptable electronic devices. The sensor can detect external light sources and measure ambient temperature, demonstrating stable operation even after transitioning from a planar to a three-dimensional configuration. This research lays the foundation for next-generation FPCBs that can be seamlessly integrated into various products, ushering in a new era of electronic device design and functionality.

Face Detection Algorithm using Kinect-based Skin Color and Depth Information for Multiple Faces Detection (Kinect 디바이스에서 피부색과 깊이 정보를 융합한 여러 명의 얼굴 검출 알고리즘)

  • Yun, Young-Ji;Chien, Sung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.137-144
    • /
    • 2017
  • Face detection is still a challenging task under severe face pose variations in complex background. This paper proposes an effective algorithm which can detect single or multiple faces based on skin color detection and depth information. We introduce Gaussian mixture model(GMM) for skin color detection in a color image. The depth information is from three dimensional depth sensor of Kinect V2 device, and is useful in segmenting a human body from the background. Then, a labeling process successfully removes non-face region using several features. Experimental results show that the proposed face detection algorithm can provide robust detection performance even under variable conditions and complex background.

A Study on the Shift Register-Based Multi Channel Ultrasonic Focusing Delay Control Method using a CPLD for Ultrasonic Tactile Implementation (초음파 촉각 구현을 위한 CPLD를 사용한 Shift Register기반 다채널 초음파 집속 지연 제어 방법에 대한 연구)

  • Shin, Duck-Shick;Park, Jun-Heon;Lim, Young-Cheol;Choi, Joon-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.324-329
    • /
    • 2022
  • This paper proposes a shift-register-based multichannel ultrasonic focusing delay control method using a complex programmable logic device (CPLD) for a high resolution of ultrasonic focusing system. The proposed method can achieve the ultrasonic focusing through the delay control of driving signals of each ultrasonic transducer of an ultrasonic array. The delay of the driving signals of all ultrasonic channels can be controlled by setting the shift register in the CPLD. The experiment verified that the frequency of the clock used for the delay control increased, the error of the focusing point decreased, and the diameter of the focusing point decreased as the length of the shift register in the proposed method. The proposed method used only one CPLD for ultrasonic focusing and did not require to use complex hardware circuits. Therefore, the resources required for the design of an ultrasonic focusing system could be reduced. The proposed method can be applied to the fields of human computer interaction (HCI), virtual reality (VR) and augmented reality (AR).