• Title/Summary/Keyword: Complex sensor device

Search Result 63, Processing Time 0.024 seconds

Sensor signal processing device for USN application and general purpose (USN응용과 범용목적에 적용가능한 센서 신호처리기)

  • Park, Chan-Won;Kim, Il-Hwan;Chun, Sam-Sug
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.230-237
    • /
    • 2010
  • In sensor signal conditioning and processing, offset and drift characteristics of an operational amplifier are an important factor when the amplifier is used for a precise sensor signal amplifier. In order to use it in high accuracy, an expensive trimming or a complex compensation circuit is required. This paper presents the improved sensor signal conditioning and processing device for ubiquitous sensor network(USN) application or general purpose by developing a hardware of the circuit for reducing the offset voltage and drift characteristics, and a software for its control and sensor signal processing. We realize better offset voltage and drift characteristics of the signal conditioning circuit using low cost operational amplifiers. The experimental results show that this technique is effective in improving the performance of the sensor signal processing device.

Fabrication and Experiment of Ultrasonic Sensor Integrated Motion Recognition Device for Vehicle Manipulation (초음파 센서를 이용한 모션 인식 차량 통합 제어 장치의 제작 및 실험)

  • Na, Yeongmin;Park, Jongkyu;Lee, Hyunseok;Kang, Taehun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • Worldwide, studies on intelligent vehicles for the convenience of drivers have been actively conducted as the number of cars has increased. However, vehicle convenience enabled by buttons lowers the concentration on driving and hence poses as a huge threat to the safety of the driver. The use of one of the convenient features, impaired driving auxiliary equipment, is limited because of its complex usage, and this device also hinders the front view of the driver. This paper proposes a vehicle-control device for controlling the convenient features as well as changes in speed and direction using gestures and motions of the driver. This device consists of an ultrasonic sensor for recognizing movement, an arduino for accepting signal control functions and servo and DC motors apply to various vehicle parts. Firstly, the vehicle-control device was designed using a 3D CAD program known as Solid-works based on the size of the steering wheel. Then, through simulations, a suitable length for minimizing the absorbent between ultrasonic sensors was confirmed using a program known as COMSOL Multiphysics. Finally, simulation results were verified through experiments, and the optimal size of the device was identified through the number of errors.

Development of Optical Strain Sensor with Nanostructures on a Poly-dimethylsiloxane (PDMS) Substrate (Poly-dimethylsiloxane (PDMS) 기판 위에 형성된 나노구조를 이용한 시각 인장센서의 개발)

  • Kim, Geon Hwee;Woo, Hyeonsu;Lim, Geunbae;An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.392-396
    • /
    • 2018
  • Structural color has many advantages over pigment based color. In recent years, researches are being conducted to apply these advantages to applications such as wearable devices. In this study, strain sensor, a kind of wearable device, was developed using structural color. The use of structural color has the advantage of not using energy and complex measuring equipment to measure strain rate. Wrinkle structure was fabricated on the surface of Poly-dimethylsiloxane (PDMS) and used it as a sensor which color changes according to the applied strain. In addition, a transmittance-changing sensor was developed and fabricated by synthesizing additional glass nanoparticles. Furthermore, a strain sensor was developed that is largely transparent at the target strain and opaque otherwise.

Implementation of Computer Device of 2dimension Input for the disabled Using a Angular Acceleration Sensor (각가속도계 센서를 이용한 장애인용 컴퓨터 2차원 입력장치의 구현)

  • 정상봉;한성현
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.837-840
    • /
    • 1998
  • In this paper, we designed the computer input device for rehabilitation of people with hand disabilities. This input device is made up of two Gyrostar sensors attached in the orthnormal directions of x, y axes. Gyrostar is a sensor for angular Acceleration. This device is attached by the user's head side. Head movement is detected by analysing and processing the output wave signals from the sensors therefore enabling the user to move the mouse pointer that helps to operate the computer. This method does not necessitate a complex hardware or a long installation process, which was formerly the case, and uses real time algorithms which enables simple emulation of a computer mouse. The interface of this device and the mouse are the same.

  • PDF

Real-time 3-Dimensional Measurement of Lumbar Spine Range of Motion using a Wireless Sensor (무선 센서를 활용한 요추 가동 범위의 실시간 3차원 측정)

  • Jeong, Woo-Hyuk;Jee, Hae-Mi;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.713-718
    • /
    • 2012
  • Lumber spine range of motion has been used to measure of physical and functional impairment by various tools from a ruler to 3D kinematic devices. However, pre-existing tools have problems in either movement or accuracy and reliability limitations. Accurate devices are limited by fixed space whereas simple devices are limited in measuring complex movements with less accuracy. In order to solve the location, movement and accuracy limitations at once, we have developed a novice measurement device equipped with accelerometer sensor and gyroscope sensor for getting three-dimensional information of motion. Furthermore, Kalman filter was applied to the algorithm to improve accuracy. In addition, RF wireless communication was added for the user to conveniently check measured data in real time. Finally, the measurement method was improved by considering the movement by a reference point. An experiment was conducted to test the accuracy and reliability of the device by conducting a test-retest reliability test. Further modification will be conducted to used the device in various joints range of motion in clinical settings in the future.

A Study of Non-Intrusive Appliance Load Identification Algorithm using Complex Sensor Data Processing Algorithm (복합 센서 데이터 처리 알고리즘을 이용한 비접촉 가전 기기 식별 알고리즘 연구)

  • Chae, Sung-Yoon;Park, Jinhee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, we present a home appliance load identification algorithm. The algorithm utilizes complex sensory data in order to improve the existing NIALM using total power usage information. We define the influence graph between the appliance status and the measured sensor data. The device identification prediction result is calculated as the weighted sum of the predicted value of the sensor data processing algorithm and the predicted value based on the total power usage. We evaluate proposed algorithm to compare appliance identification accuracy with the existing NIALM algorithm.

ANALYSIS OF THE IMAGE SENSOR CONTROL METHOD

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Yong, Sang-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.464-467
    • /
    • 2007
  • All image data acquisition systems for example the digital camera and digital camcorder, use the image sensor to convert the image data (light) into electronic data. These image sensors are used in satellite camera for high quality and resolution image data. There are two kinds of image sensors, the one is the CCD (charge coupled device) detector sensor and the other is the CMOS (complementary metal-oxide semiconductor) image sensor. The CCD sensor control system has more complex than the CMOS sensor control system. For the high quality image data on CCD sensor, the precise timing control signal and the several voltage sources are needed in the control system. In this paper, the comparison of the CCD with CMOS sensor, the CCD sensor characteristic, and the control system will be described.

  • PDF

Study on Comparing the Performance of Linear CCD sensor with PSD sensor for Distance Measurement (변위측정을 위한 선형 CCD 센서와 PSD 센서의 성능 비교에 관한 연구)

  • Shin, Myung-Kwan;Park, Kyi-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2167-2169
    • /
    • 2004
  • The main concern for a displacement measurement is the performance of a sensor such as speed, resolution, accuracy and so on. The mainly used sensors are a linear CCD(charge coupled device) and a PSD(position sensitive detection) as a non-contact type. The output value of a linear CCD is so sensitive to a temperature change that it needs a cooling device. Additionally, because of its structural problem, there are some limits in resolution and speed, and it needs a complex image processing algorithm. Also, PSD has some disadvantages like sensitivity to environmental lights and nonlinearities. Like this, a linear CCD and PSD have their own characteristics and if we know them well, we can choose the one of the two sensors properly in some applications according to purposes. In this paper, I performed which one is superior to the other among the two sensors in terms of accuracy, resolution, measurement speed, signal to noise ratio.

  • PDF

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Short Review of 3D Printed Piezoelectric Sensors

  • Chang, Sang-Mi;Kang, Chong-Yun;Hur, Sunghoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.279-285
    • /
    • 2022
  • Recently, 3D printing technology has gained increased attention in the manufacturing industry because it allows the manufacturing of complex but sophisticated structures as well as moderate production speed. Owing to advantages of 3D printers, such as flexible design, customization, rapid prototyping, and ease of access, can also be advantageous to sensor developments, 3D printing demands have increased in various active device fields, including sensor manufacturing. In particular, 3D printing technology is of significant interest in tactile sensor development where piezoelectric materials are typically embedded to acquire voltage signals from external stimuli. In regard with piezoelectricity, researchers have worked with various piezoelectric materials to achieve high piezoelectric response, but the structural approach is limited because ceramics have been regarded as challenging materials for complex design owing to their limited manufacturing methods. If appropriate piezoelectric materials and approaches to design are used, sensors can be fabricated with the improved piezoelectric response and high sensitivity that cannot be found in common bulk materials. In this study, various 3D printing technologies, material combinations, and applications of various piezoelectric sensors using the 3D printing method are reviewed.