• Title/Summary/Keyword: Complex permittivity(dielectric constant) measurement

Search Result 12, Processing Time 0.02 seconds

Simple Technique for Measurement of Complex Permittivity and Detection of Small Permittivity Change Using Partially Open Cavity

  • Park, Sangbok;Chung, Young-Seek;Cheon, Changyul
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.268-272
    • /
    • 2014
  • This letter presents a measurement methodology of the complex permittivity of liquid using a partially open cavity in narrow band. The partially open cavity (POC) can measure dielectric small changes caused by the temperature variation of the liquid inside the cavity as well. Using the resonance frequency and unloaded quality factor of the proposed POC, the complex permittivity is evaluated. The apertures on the walls of the cavity are designed to circulate the liquid inside to outside of the POC and located at the corner area of the cavity to minimize the disturbance of field distribution at the dominant mode. The results measured by the proposed POC were compared with those by the conventional open-ended probe and Cole-Cole equation. The POC showed better performance in measuring small dielectric constant changes than the open-ended probe.

Measurement Of The Engine Oil Relative Dielectric Constant With Respect To Capacitive Prove Dimension (정전용량 프로브 크기에 대한 엔진오일 상대 유전율 측정)

  • Kim, Ki-Hoon;Kim, Young-Ju
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.209-212
    • /
    • 2011
  • The capacitive application(prove) can be used to measure the complex permittivity of dielectric material of various thickness and cross section. This paper presents that we designed the analysis system of engine oil permittivity to know the relation between the engine oil deterioration and the prove dimension. Each of the dimension of capacitive prove is changed and then electric capacity is measured by LCR {Inductance(L), Capacitance (C), and Resistance (R)} meter. The engine oil permittivity has extracted in the prove measurement. As the additional research, this paper suggest the best of the prove dimension for the permittivity measurement.

Microwave Rectangular Waveguide Measurement of the Engine Oil Dielectric Constant (초고주파 구형도파로를 이용한 엔진 오일의 유전율 측정)

  • Kim, Ki-Hoon;Kim, Young-Ju
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • The rectangular waveguide technique can be used to measure the complex permittivity of dielectric material of various thickness and cross section. This paper presents the analysis system of engine oil permittivity at which deterioration of engine oil is measured at the X-band(8-12.5 GHz). The middle of the rectangular waveguide has engine oil case and is connected with VNA(Vector Network Analyzer) for the measurement of the transmission$(S_{21})$ and reflection$(S_11)$ and then the permittivity is extracted. The deterioration of engine oil is proved by the comparison with both the extracted data and reference data. As the additional research, This paper suggest that an accurate permittivity is considered by not only the wave guide length but the air gap between oil case and the waveguide.

Measurement of Complex Permittivity and Permeability for Powder-type Materials (분말재료의 복소 유전율 및 투자율 측정)

  • Park, Sang-Bok;Lee, Jang-Soo;Chong, Young-Seek;Cheon, Chang-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2196-2201
    • /
    • 2007
  • Materials used at microwave are usually used as a dielectric with a manufacturing purpose of printed circuit boards, etc. Complex permittivity of them can be measured from attenuation constant or propagation constant of a transmission line using a microstrip line with bulk type. But as the technique recently which can manufacture to have complex permittivity and permeability demanded using nonferrous metals for powder-type grows up, we need sensors and methods which can measure characteristics of powder-type materials. So far measuring methods of permittivity and permeability with waveguide or coaxial cable are used but they have faults which have a complex measurement method and are difficult to simultaneously measure permittivity and permeability. In this paper, a simultaneous measuring method of permittivity and permeability with 2-port coaxial cable and a new proposed calculation. The proposed 2-port coaxial cable is designed to be easy to insert materials and to have a wideband. We measure permittivity and permeability of magnetic powder(Ni-Fe-Mo, Ni-Fe) which reveal its characteristic at $0.3{\sim}1.3GHz$ to identify the proposed sensor.

Measurement of the planar substrate dielectric constant using a microstrip line (마이크로스트립 선로를 이용한 기판의 유전율 측정)

  • Han, Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • This paper suggested the fast and easy method of the dielectric constant measurement for planar dielectrics using a microstrip line. The complex permittivity and permeability were presented by the first reflection and transmission coefficient which were derived from the scattering parameters. This method was verified by the measurement of a known planar dielectric using a microstrip line. This method can be applied to the dielectric constant measurement of unknown planar dielectric.

Dielectric Properties of Epoxy/Micro/Nano Alumina Multi-Composites (에폭시/마이크로/나노알루미나 혼합된 멀티-콤포지트의 유전 특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.565-570
    • /
    • 2016
  • In this work, the complex permittivity of epoxy resins is measured. Epoxy resins, epoxy with micro size fillers and epoxy with micro+nano alumina composites have been evaluated for dielectric properties according to frequency variation. The dielectric spectroscopy measurement and analyses are carried out in the frequency range of $10^{-2}Hz$ to 1MHz and constant to room temperature. The results of dielectric loss suggest that significant improvement in the electrical performance can be expected by using samples containing nano and micro fillers mixture when compared to materials containing only microfillers. As the result, we verified the specific characteristics of dielectric permittivity and dielectric loss namely, relative permittivity become low with improving dispersibility of nano+micro mixture composites and become rise with agglomerate of nano particles.

Complex Dielectric Constant Measurements for Conductor-Loaded Composite Materials Using Genetic Algorithms (유전알고리듬을 이용한 도체 입자가 함유된 복합물질의 복수유전율 측정)

  • Lee, Sang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.10-15
    • /
    • 2005
  • In this paper, a simple but fast and reliable technique for the complex dielectric constant measurement of non-magnetic materials is introduced using a measured transmission coefficient (S21) and a genetic algorithm as an inversion process at microwave frequencies. In this experiment, it has been found that the transmission method is less susceptible with the measurement errors than that of the reflection method and the genetic algorithm can be efficiently used as a search technique. The suggested technique is validated with known and unknown conductor-loaded lossy materials and the conductor-loaded PCB at X-band.

A Study on Dielectric Properties of Printed Circuit Board(PCB) Materials in the Frequency Range of 100MHz to 1Ghz

  • Kim, Jong-Heon;C. Venkataseshaiah;Lee, Joon-Ung
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.40-44
    • /
    • 1997
  • This paper presents the results of studies made for measuring the relative complex permittivity of PCB sheet material in he frequency a range of 100MHz∼1GHz using vector network analyzer. A measurement cell was developed for this purpose using broad-band impedance method and the dielectric constant and loss tangent of two PCBV sheet materials, glass-epoxy and teflon, were measured. The effect of copper cladding was studied.

  • PDF

Open-ended Coaxial Probe Technique for the Dielectric Characterization of Propylene Carbonate, Dimethyl Carbonate and Their Mixtures from 0.1 to 8 GHz at 288.15, 298.15, and 308.15 K (개방 단말 동축선을 활용한 프로필렌 카보네이트, 디메틸 카보네이트 및 이들의 이성분계 혼합물의 유전 이완 측정과 해석)

  • Hyo Jung Kim;Seung-Wan Song;Tae Jun Yoon
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.228-238
    • /
    • 2024
  • Electrolytes are one of the essential components of a lithium-ion battery. They determine the battery's lifespan and cell characteristics. The dielectric constant is a key thermophysical property for determining how much salt can be dissociated and solvated in a solution. Hence, fast and reliable dielectric constant measurement is essential when formulating an electrolyte solution. This work implemented an open-ended coaxial probe (OECP) station as a quick and reliable tool to measure the complex permittivity spectra of electrolyte solutions. The capability of the OECP station was tested by measuring the complex permittivity of propylene carbonate (PC), dimethyl carbonate (DMC), and their mixtures from 0.1 to 8 GHz at 288.15, 298.15, and 308.15 K. The obtained dielectric spectra were then interpreted based on dielectric relaxation models and thermodynamic theories. The measured static dielectric constant data agreed well with the data from previous studies. They were also correlated using the Wang-Anderko thermodynamic model, showing approximately a 1% deviation from the experimental data. In addition, the relaxation characteristics, including the relaxation time and the Cole-Davidson exponent, showed that the microstructure of the solution significantly changes at the propylene carbonate mole fraction of 0.4. These results and methodologies are expected to contribute to the further understanding of electrolyte solutions and ultimately lead to the optimization of electrolyte formulation for lithium-ion batteries.

Characteristics of Variant Dielectric Constants With Respect to Internal Combustion Engine Oil States (내연기관의 엔진오일상태에 대한 유전율 변화 특성)

  • Kim, Dong-Min;Kim, Yong-Ju;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.19-21
    • /
    • 2012
  • The engine oil life of internal combustion engine is shorted by the thermal effect and that causes air pollution. In order to measure the status of engine oil accurately, the exchange of new oil extends the life of combustion engine and reduces environmental pollution. Capacitance probes, such as engine oil and fluids can be used to measure the dielectric constant. In this paper, the degradation of engine oil varies depending on the degree of dielectric properties was analyzed. Depending on the state of the oil, the variant capacitance of the probe was measured by LCR Meter, respectively, and then the permittivity of oil was calculated. In addition, according to the size of the probe by measuring the change in capacitance measurement, accuracy of dielectric constant are presented. According to oil contaminated with the more increase in dielectric constant, we can decide that contaminated oil is available.