• Title/Summary/Keyword: Complex permeability

Search Result 228, Processing Time 0.03 seconds

Effect of B-Bi-Zn Addition on the Permeabilities of Hexagonal-ferrite (B-Bi-Zn 첨가가 hexagonal-ferrite 특성에 미치는 영향)

  • 정승우;백승철;김성수;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.204-207
    • /
    • 2000
  • In this paper, we have studied the effect of doped with B-Bi-Zn on properties (microstructure, density, shrinkage, permeability as a function of frequency, etc.) of hexagonal-ferrite for high frequency chip-inductor material about several GHz. The permeability were analyzed by impedance analyzer(100 kHz~40 MHz) and network analyzer(30 MHz~3 GHZ). As a result of the characteristics, the B-Bi-Zn glass ceramic was used to lower the sintering temperature for additive as a function of frequency from 100 kHz to 1.8 GHz showed constant tends. The maximum imaginary value of complex permeability was observed near the resonance frequency of 2 GHz.

  • PDF

Numerical analysis of embankment primary consolidation with porosity-dependent and strain-dependent coefficient of permeability

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.93-106
    • /
    • 2022
  • The total embankment settlement consists of three stages: the initial settlement, the primary consolidation settlement, and the secondary consolidation settlement. The total embankment settlement is largely controlled by the primary consolidation settlement, which is usually computed with numerical models that implement Biot's theory of consolidation. The key parameter that affects the primary consolidation time is the coefficient of permeability. Due to the complex stress and strain states in the foundation soil under the embankment, to be able to predict the consolidation time more precisely, aside from porosity-dependency, the strain-dependency of the coefficient of permeability should be also taken into account in numerical analyses. In this paper, we propose a two-dimensional plane strain numerical model of embankment primary consolidation, which implements Biot's theory of consolidation with both porosity-dependent and strain-dependent coefficient of permeability. We perform several numerical simulations. First, we demonstrate the influence of the strain-dependent coefficient of permeability on the computed results. Next, we validate our numerical model by comparing computed results against in-situ measurements for two road embankments: one near the city of Saga, and the other near the city of Boston. Finally, we give our concluding remarks.

Polysulfone/nanocomposites mixed matrix ultrafiltration membrane for the recovery of Maillard reaction products

  • Basu, Subhankar;Mukherjee, Sanghamitra;Balakrishnan, Malini;Deepthi, M.V.;Sailaja, R.R.N.
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • Maillard reaction products like melanoidins present in industrial fermentation wastewaters are complex compounds with various functional properties. In this work, novel ultrafiltration (UF) mixed matrix membrane (MMM) composed of polysulfone (PSF) and nanocomposites was prepared through a phase inversion process for the recovery of melanoidins. Nanocomposites were prepared with acid functionalized multiwalled carbon nanotubes (MWCNTs) as the reinforcing filler for chitosan-thermoplastic starch blend. Higher nanocomposites content in the PSF matrix reduced the membrane permeability and melanoidins retention indicating tighter membrane with surface defects. The membrane surface defects could be sealed with dilute polyvinyl alcohol (PVA) solution. The best performing membrane (1% nanocomposites in 18% PSF membrane sealed with 0.25% PVA coating) resulted in uniform melanoidins retention of 98% and permeability of 3.6 L/m2 h bar over a period of 8h. This demonstrates a low fouling PSF membrane for high melanoidins recovery.

Microwave Absorbing Properties of Rubber Composites Containing Soft Magnetic Fe-Alloy Particles (철계 연자성 합금 분말을 함유한 고무 복합재의 전파흡수특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.125-128
    • /
    • 2013
  • Magnetic and dielectric properties of rubber composites are controlled by using two kinds of high-permeability metal particles with different electrical conductivity (Sendust, Permalloy), and their effect on microwave absorbance has been investigated, focusing on the quasi-microwave frequency band (0.8-2 GHz). Noise absorbing sheets are composite materials of magnetic flake particles of high aspect ratio dispersed in polymer matrix with various filler amount of 80-90 wt.%. The frequency dispersion and magnitude of complex permeability is almost the same for Sendust and Permalloy composite specimens. However, the complex permittivity of the Permalloy composite (${{\varepsilon}_r}^{\prime}{\simeq}250$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}50$) is much greater than that of Sendust composite (${{\varepsilon}_r}^{\prime}{\simeq}70$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}0$). Due to the large dielectric permittivity of Permalloy composite, the absorbing band is shifted to lower frequency region. However, the investigation of impedance matching reveals that the magnetic permeability is still small to satisfy the zero-reflected condition at the quasi-microwave frequency band, resulting in a small microwave absorbance lower than 10 dB.

Effect of Ionic Stress on the Stability of Bacterial Spores (세균 포자의 안정성에 미치는 이온 강도의 영향)

  • Rhee, Chong-Ouk
    • Applied Biological Chemistry
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 1976
  • High ionic strength is expected to enhance dissociation of Ca-DPA from spores and to contribute to a detrimental effect on spore stability or on spore heat resistance with a combined treatment of gamma-radiation. From this study, this hypothesis has become apparent as as follows; 1) Ca-DPA dissociation contributes to loss of stability of bacterial spores with respect to heat resistance, survival during storage, and 2) the cytoplasmic membrane plays a role in maintaining the stability of DPA-Ca-spore complex, apparently by serving as a permeability barrier.

  • PDF

Design and Properties of Ferrite Absorber Used in Anechoic Chamber (전파무향실용 페라이트 흡수체의 설계 및 특성)

  • 한대희;김진석;오길남;조성백;김성수
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.4
    • /
    • pp.40-46
    • /
    • 1994
  • Design and microwave absorbing properties of ferrite plate are investigated for the application to the radiowave absorbers used in anechoic chamber. The required frequency-dependence of complex permeability is determined on the basis of wave-impedance-matching relationship. The plate thickness and matchingfrequency are determined from the complex permeability and dielectric constant, and then compared with the directly measured reflection loss. A systematic variation of material constants and their influence on the microwave absorbing properties are demonstrated.

  • PDF

Microwave Absorbing Properties of Grid-type Magnetic Composites (격자형 자성 복합재의 전파흡수 특성)

  • Park, Myung-Joon;Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.389-393
    • /
    • 2012
  • Improvement in microwave absorbance has been investigated by insertion of a periodic air cavity in rubber composites filled with magnetic powders. A mixture of $Co_2Z$ hexagonal ferrite and Fe powders were used as the absorbent fillers in silicone rubber matrix. The complex permeability and complex permittivity of the magnetic composites were measured by reflection/transmission technique. In the grid-type magnetic absorbers, the equivalent permeability (${\mu}_{eq}$) and permittivity (${\varepsilon}_{eq}$) are calculated as a function of air volume rate (K) on the basis of effective medium theory. Reduction in the material parameters (especially, dielectric permittivity and magnetic loss) has been estimated with the increase of K. Plotting the ${\mu}_{eq}$ and ${\varepsilon}_{eq}$ on the solution map of wave-impedance matching, wide bandwidth microwave absorbance has been predicted in the magnetic composites with an optimum value of K.

Effect of cobalt ferrite on curing and electromagnetic properties of natural rubber composites

  • Anuchit Hunyek;Chitnarong Sirisathitkul
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • The combination of cobalt ferrite and natural rubber has a potential to enhance the functional properties of rubber ferrite composites available on the market. In this study, cobalt ferrite was synthesized by the sol-gel method with tapioca starch as a cheating agent and then incorporated into natural rubber using an internal mixer. The curing characteristics, magnetic hysteresis, complex permeability, and permittivity of the rubber ferrite composites were studied as a function of the loading from 0 to 25 phr. The cure time and scorch time tended to reduce with the addition of non-reinforced cobalt ferrite fillers. The remanent and saturation magnetizations were linearly proportional to the cobalt ferrite loading, consistent with the rule of mixture. On the other hand, the increase in cobalt ferrite loading from 5 to 25 phr slightly affected the coercive field and the complex permeability. Using the maximum loading of 25 phr, both real and imaginary parts of the permittivity were significantly raised and reduced with the frequency in the 10-300 MHz range.

A Study on the High Frequency Properties of Mn-Zn ferrite with Re2O3(R=Dy, Gd, Ho) Addition (Re2O3(R=Dy, Gd, Ho)첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구)

  • 최우성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.538-548
    • /
    • 2003
  • We studied effects by Re$_2$O$_3$(R=Dy, Gd, Ho) addition on the properties of Mn-Zn ferrite. The doping concentration range from 0.05 wt% to 0.25 wt%. All samples were prepared by standard fabrication of ceramics. With increasing the rare earth oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. In case of excessive addition of additive beyond some level, initial permeability properties of ferrite have gone down in spite of anomalous grain. With increasing the content of additive, both the real and imaginary component of complex permeability and the magnetic loss (tan$\delta$) increased. Because the increased rate of real component had higher than imaginary component, magnetic loss increased none the less for increasing the real component related with magnetic permeability. But, the magnetic loss of ferrite doped with the rare earth oxides was lower than that of Mn-Zn ferrite at any rate. The small amount of present rare earth oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary. It was seem to be due to the formation of mutual reaction such as between iron ions and rare earth element ions.