• Title/Summary/Keyword: Complex oxides

Search Result 106, Processing Time 0.031 seconds

Defect Structure, Nonstoichiometry and Nonstoichiometry Relaxation of Complex Oxides

  • Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.660-682
    • /
    • 2007
  • An SOFC consists of all ceramic complex oxides each with different electrochemical-property requirements. These requirements, in principle, can be made met to a great extent by controlling or tailoring the defect structure of the oxide. This paper reviews the defect structure, nonstoichiometry as a measure of the total defect concentration, and the defect relaxation kinetics of complex oxides that are currently involved in a variety of growing applications today.

Theoretical and Experimental Studies on the Kinetics of Cation Redistribution Processes in Complex Oxides

  • Shi, Jianmin;Becker, Klaus-Dieter
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • The kinetics of cation reequilibration have been studied theoretically and experimentally in complex oxides after an external perturbation of equilibrium by temperature jumps. A general kinetic model for cation redistribution amongst non-equivalent sites in complex oxides is derived based on a local homogeneous point defect mechanism involving cation vacancies. Temperature-jump optical relaxation spectroscopy has been established to investigate cation kinetic processes in spinels and olivines. The kinetic model satisfactorily describes the experimental absorbance relaxation kinetics in cobalt containing olivines and in nickel containing spinels. It is found that the kinetics of cation redistribution in complex oxides shows a strong temperature- and composition-dependence. Activation energies for cation redistribution in Co-Mg olivines are found to range between 200 and 220 kJ/mol whereas an energy barrier of about 230 kJ/mol is observed in the case of nickel gallate spinel.

Effects of Complex Oxides on HAZ Toughness of Three API X80 Linepipe Steels (API X80 라인파이프강의 용접열영향부 충격인성에 미치는 복합산화물의 영향)

  • Shin, Sang Yong;Oh, Kyoungsik;Kang, Ki Bong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2008
  • This study is concerned with effects of complex oxides on Charpy impact toughness of heat affected zone (HAZ) of API X80 linepipe steels. Three kinds of steels were fabricated by varying alloying elements such as Ti, Al, and Mg and hot-rolling conditions to form complex oxides, and their microstructures and Charpy impact properties were investigated. The number of complex oxides present in the steel containing excess Ti, Al, and Mg was twice larger than that in the conventional steels, while their size ranged from 1 to $3{\mu}m$ in the three steels. After the HAZ simulation test, the steel containing a number of oxides contained about 20 vol.% of acicular ferrite in the simulated HAZ, together with bainitic ferrite and martensite, whereas the HAZ microstructure of the conventional steels consisted of bainitic ferrite and martensite with a small amount of acicular ferrite. This formation of acicular ferrite in the oxide-containing steel was associated with the nucleation of acicular ferrite at complex oxides, thereby leading to the great (five times or more) improvement of Charpy impact toughness over the conventional steels.

Correlation Study of Microstructure and Mechanical Properties in Heat Affected Zones of API X80 Pipeline Steels containing Complex Oxides (복합산화물이 형성된 API X80 라인파이프강의 용접열영향부 미세조직과 기계적 특성의 상관관계 연구)

  • Shin, Sang Yong;Oh, Kyoungsik;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.59-70
    • /
    • 2009
  • This study is concerned with the correlation between microstructure and mechanical properties in heat affected zones (HAZs) of API X80 pipeline steels containing complex oxides. Three kinds of specimens were fabricated by varying alloying elements of Ti, Al, and Mg to form complex oxides, and their microstructures, Vickers hardness, Charpy impact properties were investigated. The number of complex oxides increased as the excess amount of Ti, Al, and Mg was included in the steels. The simulated HAZs containing a number of oxides showed a high volume fraction of acicular ferrite region because oxides acted as nucleation sites for acicular ferrite. According to the correlation study between thermal input, volume fraction of acicular ferrite region, and Charpy impact properties, the ductile fracture occurred predominantly when the volume fraction of acicular ferrite region was 65% or higher, and the Charpy absorbed energy was excellent over 200 J. When the volume fraction of acicular ferrite region was 35% or lower, the Charpy absorbed energy was poor below 50 J as the brittle cleavage fracture occurred. These findings suggested that the active nucleation of acicular ferrite in the oxide-containing steel HAZs was associated with the great improvement of Charpy impact properties of the HAZs.

Charpy Impact Properties of Heat Affected Zones of API X80 Linepipe Steels Containing Complex Oxides (복합산화물이 형성된 API X80 라인파이프강의 용접열영향부 샤르피 흡수에너지)

  • Sung, Hyo Kyung;Shin, Sang Yong;Cha, Wooyeol;Oh, Kyungshik;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.875-883
    • /
    • 2010
  • This study assessed the Charpy impact properties of the heat-affected zones (HAZs) of API X80 linepipe steels containing complex oxides. Three types of steel were fabricated by adding Mg and $O_2$ to form complex oxides and their microstructures and Charpy impact properties were investigated. The number of complex oxides increased with the amount of excess Mg and $O_2$ that was included in the steels. Simulated HAZs containing a number of oxides showed a high volume fraction of acicular ferrite (AF) because the oxides acted as nucleation sites for AF, thereby leading to an improvement in the Charpy impact properties. According to a correlation study between the heat input, the volume fraction of the AF, and the Charpy impact properties, ductile fractures occurred predominantly when the fraction of the AF was 20% or higher; moreover, the Charpy absorbed energy was excellent at more than 100 J. These findings suggest that the improvement of the Charpy impact properties of the HAZs was associated with the active nucleation of AF in the oxide-containing steel HAZs.

A Study on the Reaction Characteristics of Rare Earth Oxides with Lithium Oxide in LiCl Molten Salt (LiCl 용융염 중에서 희토류 산화물과 산화리튬의 반응특성에 관한 연구)

  • 오승철;박성빈;김상수;도재범;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.447-452
    • /
    • 2003
  • We had clarified the reactions of the rare earth oxides($RE_2O_3$) with lithium oxide produced in lithium reduction process of oxide fuels. Oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium reacted with lithium oxide in the higher concentration than the respective certain critical concentration of lithium oxide and formed complex oxides($LiREO_2$). The critical lithium oxide concentrations for the formation of complex oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium oxide were respectively 0.1 wt%, 1.9 wt%, 5.3 wt%, 5.0 wt%, 3.0 wt%, 3.9 wt% 2.9 wt%, 2.6 wt% and 0.3 wt%. Cerium and lanthanum oxide did not react with lithium oxide. These complex oxides obtained from experiments have limited solubility in lithium chloride at $650^{\circ}C$.

  • PDF

Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures

  • Zou, C.W.;Gao, W.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This is an overview paper reporting our most recent work on processing and microstructure of nano-structured oxides and their photoluminescence and photo-catalysis properties. Zinc oxide and related transition metal oxides such as vanadium pentoxide and titanium dioxide were produced by a combination of magnetron sputtering, hydrothermal growth and atmosphere controlled heat treatment. Special morphology and microstructure were created including nanorods arrays, core-brushes, nano-lollipops and multilayers with very large surface area. These structures showed special properties such as much enhanced photoluminescence and chemical reactivity. The photo-catalytic properties have also been promoted significantly. It is believed that two factors contributed to the high reactivity: the large surface area and the interaction between different oxides. The transition metal oxides with different band gaps have much enhanced photoluminescence under laser stimulation. Use of these complex oxide structures as electrodes can also improve the energy conversion efficiency of solar cells. The mixed oxide complex may provide a promising way to high-efficiency photo emitting materials and photo-catalysts.

Oxidative Decomposition of TCE over TiO2-Supported Metal Oxide Catalysts (TiO2에 담지된 금속 산화물 촉매상에서 TCE 산화분해반응)

  • Yang Won-Ho;Kim Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.221-227
    • /
    • 2006
  • Oxidative TCE decomposition over $TiO_2$-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial $TiO_2$ were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D $TiO_2\;and\;CrO_x$ would be the respective promising support and active ingredient for the oxidative TCE decomposition. The $TiO_2-based\;CrO_x$ catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high $CrO_x$ contents for preparing $CrO_x/TiO_2$ catalysts might produce $Cr_2O_3$ crystallites on the surface of $TiO_2$, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported $CrO_x$-based bimetallic oxide systems offered a very useful approach to lower the $CrO_x$ amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.

Autoxidation of Cycloalkenes by the System “Molecular Oxygen-bis(acetylacetonato) Cobalt (II) Complex-butyraldehyde”

  • Fang, Zhao;Tang, Rui-Ren;Zhang, Rui-Rong;Huang, Ke-long
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2208-2212
    • /
    • 2009
  • Oxidation of cycloalkenes with $O_2$ promoted by heterogeneous bis(acetylacetonato) cobalt (II) complex catalyst which can be recycled has been performed under mild conditions. It was found that $\beta$-ionone, cyclohexene, 1-methylcyclohexene, and $\alpha$-ionone were efficiently oxidized with $O_2$ in the presence of Co (II) complex and butyraldehyde at $55\;{^{\circ}C}$. A simple treatment of the resulting products led to epoxides as predominant products and a small amounts of allylic oxides, the chemoselectivity for the former being 82.1 - 90.8% with a 70.6 - 98.6% substrate conversion. On the other hand, oxidation of 1-phenylcyclohexene, 1-cyclohex-1-enylethan-1-one, $\alpha$-pinene, and $\beta$-pinene gave allylic oxides as major products.

A Study on the high frequency properties of Mn-Zn ferrite with Nd2O3 addition (Nd2O3 첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구)

  • Choi, U-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.228-232
    • /
    • 2003
  • The effects of$ Nd_2$$O_3$addition on the properties of Mn-Zn ferrite were investigated in the doping concentration range from 0.05 to 0.25 wt%. All samples were prepared by standard fabrication of ferrite ceramics. With increasing the Neodymium oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. With increasing the content of Neodymium oxides. both the real and imaginary component of complex permeability and the magnetic loss(tan$\delta$) increased. Because reason that magnetic loss increases is high ratio that a real department increases than imaginary department. Magnetic loss increased none the less for increasing the real department related with magnetic permeability. But, the magnetic loss of ferrite doped with the Neodymium oxides were lower than that of none doped Mn-Zn ferrite. The small amount of percent Neodymium oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary.