• Title/Summary/Keyword: Complex networks

Search Result 972, Processing Time 0.032 seconds

Algorithm and Architecture of Hybrid Fuzzy Neural Networks (하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF

Qualitative Simulation on the Dynamics between Social Capital and Business Performance in Strategic Networks

  • Kim, Dong-Seok;Chung, Chang-Kwon
    • Journal of Distribution Science
    • /
    • v.14 no.9
    • /
    • pp.31-45
    • /
    • 2016
  • Purpose - This study develops a simulation model that looks at the dynamics between social capital and business performance in strategic networks to understand their behaviors in relation to each other, and to suggest dynamic relationship strategies. Research design, data, and methodology - Based on existing literature, this study identifies the complex causal loop diagram on social capital and business performance in strategic networks, and converts them into a simulation model for observing how the changes in business environment and relationship dependency affect social capital and business performance. Results - The simulation results showed that, first, the formation in social capital and business performance of networks with low relationship dependency was less affected by the changes in business environment. Second, the formation in social capital and business performance of networks with high relationship dependency was negatively impacted by the changes in business environment. In other words, higher relationship dependency strengthened the impact of changes in business environment on business performance. Conclusions - Thus, this study confirmed that in strategic networks, the changes in business environment and the degree of relationship dependency dynamically affect business performance, and that relationship dependency mediates the degree in which changes in the business environment affect business performance. The results of the simulations were further verified through actual business cases.

Synthetic Image Dataset Generation for Defense using Generative Adversarial Networks (국방용 합성이미지 데이터셋 생성을 위한 대립훈련신경망 기술 적용 연구)

  • Yang, Hunmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.

A Review of Topological Deep Learning Focused on Simplicial Complex and Cell Complex

  • Ho-Sik Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.11
    • /
    • pp.97-105
    • /
    • 2024
  • Lots of tasks including physical systems modeling, chemical reaction prediction, and relation extraction require dealing with higher-order relations. Graph neural networks (GNNs) are favorite models for relational data but they have inherent limits due to their focus on pairwise relationships. Topological data analysis (TDA) provides insight into the "shape" of data (or underlying data topology). TDA aims to infer information about data manifold such as connectivity and offers higher-dimensional analog of graphs. Topological deep learning (TDL) combines various deep learning techniques with TDA. TDL enables us to formulate simplicial complex and cell complex through techniques such as low-dimensional embedding and attention. In this paper, we summarize recent achievements especially on simplicial complex and cell complex. We also provide succinct descriptions of related concepts.

Optimization of Air Quality Monitoring Networks in Busan Using a GIS-based Decision Support System (GIS기반 의사결정지원시스템을 이용한 부산 대기질 측정망의 최적화)

  • Yoo, Eun-Chul;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.526-538
    • /
    • 2007
  • Since air quality monitoring data sets are important base for developing of air quality management strategies including policy making and policy performance assessment, the environmental protection authorities need to organize and operate monitoring network properly. Air quality monitoring network of Busan, consisting of 18 stations, was allocated under unscientific and irrational principles. Thus the current state of air quality monitoring networks was reassessed the effect and appropriateness of monitoring objectives such as population protection and sources surveillance. In the process of the reassessment, a GIS-based decision support system was constructed and used to simulate air quality over complex terrain and to conduct optimization analysis for air quality monitoring network with multi-objective. The maximization of protection capability for population appears to be the most effective and principal objective among various objectives. The relocation of current monitoring stations through optimization analysis of multi-objective appears to be better than the network building for maximization of population protection capability. The decision support system developed in this study on the basis of GIS-based database appear to be useful for the environmental protection authorities to plan and manage air quality monitoring network over complex terrain.

Truncated Kernel Projection Machine for Link Prediction

  • Huang, Liang;Li, Ruixuan;Chen, Hong
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.58-67
    • /
    • 2016
  • With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.

Improvement of the Reliability Graph with General Gates to Analyze the Reliability of Dynamic Systems That Have Various Operation Modes

  • Shin, Seung Ki;No, Young Gyu;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.386-403
    • /
    • 2016
  • The safety of nuclear power plants is analyzed by a probabilistic risk assessment, and the fault tree analysis is the most widely used method for a risk assessment with the event tree analysis. One of the well-known disadvantages of the fault tree is that drawing a fault tree for a complex system is a very cumbersome task. Thus, several graphical modeling methods have been proposed for the convenient and intuitive modeling of complex systems. In this paper, the reliability graph with general gates (RGGG) method, one of the intuitive graphical modeling methods based on Bayesian networks, is improved for the reliability analyses of dynamic systems that have various operation modes with time. A reliability matrix is proposed and it is explained how to utilize the reliability matrix in the RGGG for various cases of operation mode changes. The proposed RGGG with a reliability matrix provides a convenient and intuitive modeling of various operation modes of complex systems, and can also be utilized with dynamic nodes that analyze the failure sequences of subcomponents. The combinatorial use of a reliability matrix with dynamic nodes is illustrated through an application to a shutdown cooling system in a nuclear power plant.

Sensorless Vector Control of Induction Motor Using Neural Networks (신경망을 이용한 유도전동기 센서리스 벡터제어)

  • Park, Seong-Wook;Choi, Jong-Woo;Kim, Heung-Geun;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.195-200
    • /
    • 2004
  • Many kinds of speed sensorless control system of induction motor had been developed. But it is difficult to implement at the real system because of complex algorithm and equations. This paper investigates a novel speed sensorless control of induction motor using neural networks. The proposed control strategy is based on neural networks using stator current and output of neural model based on state observer. The errors between the stator current and the output of neural model are back-propagated to adjust the rotor speed, so that adaptive state variable will coincide with the desired state variable. This algorithm may overcome several shortages of conventional model, such as integrator problems, small EMF at low speed and relatively large sensitivity of stator resistance variation. Also, this paper presents a newly developed optimal equation about the momentum constant and the learning rate. The proposed algorithms are verified through simulation.

Estimation of wind turbine power generation using logic-based fuzzy neural networks (로직기반의 퍼지뉴럴 네트워크를 이용한 풍력발전기 출력예측)

  • Kang, Jong-Jin;Yea, Song-Bum;Cha, Jong-Hyun;Kim, Yun-Gun;Kang, Kyung-Ho;Tak, Dong-Kyu;Han, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1112_1113
    • /
    • 2009
  • This paper proposes the method to predict the wind turbine power generation using logic-based fuzzy neural networks. To predict the wind turbine power generation neural networks, logic-based fuzzy neural networks, and fuzzy neural models have been considered. But the model considered in this paper can predict the wind turbine power generation with a less complex structure. The simulation results show the effectiveness of the proposed method.

  • PDF

A Study on Fatigue Damage Modeling Using Back-Propagation Neural Networks (역전파신경회로망을 이용한 피로손상모델링에 관한 연구)

  • 조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.258-269
    • /
    • 1999
  • It is important to evaluate fatigue damage of in-service material in respect to assure safety and remaining fatigue life in structure and mechanical components under cyclic load . Fatigue damage is represented by mathematical modelling with crack growth rate da/dN and cycle ration N/Nf and is detected by X-ray diffraction and ultrasonic wave method etc. But this is estimated generally by single parameter but influenced by many test conditions The characteristics of it indicates fatigue damage has complex fracture mechanism. Therefore, in this study we propose that back-propagation neural networks on the basis of ration of X-ray half-value breath B/Bo, fractal dimension Df and fracture mechanical parameters can construct artificial intelligent networks estimating crack growth rate da/dN and cycle ratio N/Nf without regard to stress amplitude Δ $\sigma$.

  • PDF