• Title/Summary/Keyword: Complex networks

Search Result 972, Processing Time 0.027 seconds

Spatiotemporal chlorine residual prediction in water distribution networks using a hierarchical water quality simulation technique (계층적 수질모의기법을 이용한 상수관망시스템의 시공간 잔류염소농도 예측)

  • Jeong, Gimoon;Kang, Doosun;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.643-656
    • /
    • 2021
  • Recently, water supply management technology is highly developed, and a computer simulation model plays a critical role for estimating hydraulics and water quality in water distribution networks (WDNs). However, a simulation of complex large water networks is computationally intensive, especially for the water quality simulations, which require a short simulation time step and a long simulation time period. Thus, it is often prohibitive to analyze the water quality in real-scale water networks. In this study, in order to improve the computational efficiency of water quality simulations in complex water networks, a hierarchical water-quality-simulation technique was proposed. The water network is hierarchically divided into two sub-networks for improvement of computing efficiency while preserving water quality simulation accuracy. The proposed approach was applied to a large-scale real-life water network that is currently operating in South Korea, and demonstrated a spatiotemporal distribution of chlorine concentration under diverse chlorine injection scenarios.

On the Formulation and Optimal Solution of the Rate Control Problem in Wireless Mesh Networks

  • Le, Cong Loi;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.295-303
    • /
    • 2007
  • An algorithm is proposed to seek a local optimal solution of the network utility maximization problem in a wireless mesh network, where the architecture being considered is an infrastructure/backbone wireless mesh network. The objective is to achieve proportional fairness amongst the end-to-end flows in wireless mesh networks. In order to establish the communication constraints of the flow rates in the network utility maximization problem, we have presented necessary and sufficient conditions for the achievability of the flow rates. Since wireless mesh networks are generally considered as a type of ad hoc networks, similarly as in wireless multi-hop network, the network utility maximization problem in wireless mesh network is a nonlinear nonconvex programming problem. Besides, the gateway/bridge functionalities in mesh routers enable the integration of wireless mesh networks with various existing wireless networks. Thus, the rate optimization problem in wireless mesh networks is more complex than in wireless multi-hop networks.

Library resource sharing through networks (도서관 네트워크를 통한 도서관 자원공유)

  • 강숙희
    • Journal of Korean Library and Information Science Society
    • /
    • v.13
    • /
    • pp.113-130
    • /
    • 1986
  • The rapidly growing at which information is produced and used in our complex society has presented us with major problems in information transfer. Resource sharing is almost universally accepted by librarians as the only realistic means for meeting future demands and no doubt the future will see continued growth in computer-based library networks for resource sharing. The resort to networking by many library and information institutions may be symptomatic of the difficulties they face in dealing with their rapidly changing environment. In this article, the library network is examined in relationship to resource sharing. Included is a discussion of the definitions of library network and other related terms, the main factors in the emergence of library network concept, the history of the concept of library networks, resource sharing through the library networks, the problems by which the development of networks is confronted, and prospects.

  • PDF

An Empirical Study on The Pattern of Interactive Learning in Strategic Networks (전략네트워크에서 발생하는 학습패턴에 관한 실증연구)

  • Jeong, Jong-Sik;Kim, Hyun-Jee
    • International Commerce and Information Review
    • /
    • v.9 no.4
    • /
    • pp.3-19
    • /
    • 2007
  • The purpose of this paper is to study the pattern of interactive learning in strategic networks. Interactive learning is defined as the exchange and sharing of knowledge resources conducive to innovation between an innovator firm, its suppliers, and/or its customers. The strength of internal knowledge resources can either hamper or facilitate levels of interactive learning. We assume that more complex innovative activities urge firms to co-ordinate and exchange information between users and producers, which implies a higher level of interactive learning. To test our theoretical claims, we estimated the level of interactive learning of firms in strategic networks with: (1) their customers, (2) their suppliers. Theses analyses allow a comparison of the antecedents of interactive learning of firms participating in strategic networks. Our findings suggest that interactive learning with customers is positively affected by company's capabilities and value-created activities, and with supplies is positively affected by value-created activities and technology innovation centers.

  • PDF

A Study on Pattern Recognition with Self-Organized Supervised Learning (자기조직화 교사 학습에 의한 패턴인식에 관한 연구)

  • Park, Chan-Ho
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • On this paper, we propose SOSL(Self-Organized Supervised Learning) and it's architecture SOSL is hybrid type neural network. It consists of several CBP (Component Back Propagation) neural networks, and a modified PCA neural networks. CBP neural networks perform supervised learning procedure in parallel to clustered and complex input patterns. Modified PCA networks perform it's learning in order to transform dimensions of original input patterns to lower dimensions by clustering and local projection. Proposed SOSL can effectively apply to neural network learning with large input patterns results in huge networks size.

  • PDF

An Integration Architecture for the ATM Customer Network Management (ATM 고객망관리를 위한 통합 구조에 대한 연구)

  • Jon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.823-832
    • /
    • 1997
  • As enterprises use ATM networks for their private networks and as these private networks use public ATM networks for wide area communication, the need for the customers to be able to manage both private and public networks. Currently, some standardization work is being done towards providing this capability to customers. In this paper, we propose a new customer network management (CNM) system architecture for the management of both ATM a private network and a public network in a uniform way. The particular features of the proposed architecture lies in the efficient support of the complex hierarchial TMN manager-agent relationships at M3 and M4 interfaces, and the support of SNMP and CMIP integration which is necessary for the implementation of a CNM system. The TMN hierarchical many-to-many manager-agent relationships are realized by the utilization of CORBA-Based SMK (Shared Management Knowledge) implementation. We have also implemented the prototype of a ATM CNM system, and measures the performance for the demonstration of the suitability of the proposed architecture.

  • PDF

Identification of nonlinear dynamical systems based on self-organized distributed networks (자율분산 신경망을 이용한 비선형 동적 시스템 식별)

  • 최종수;김형석;김성중;권오신;김종만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.574-581
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Networks(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Self-Organized Distributed Networks (SODN). The learning with the SODN is fast and precise. Such properties are caused from the local learning mechanism. Each local network learns only data in a subregion. This paper also discusses neural network as identifier of nonlinear dynamical systems. The structure of nonlinear system identification employs series-parallel model. The identification procedure is based on a discrete-time formulation. Through extensive simulation, SODN is shown to be effective for identification of nonlinear dynamical systems. (author). 13 refs., 7 figs., 2 tabs.

  • PDF

A Comparative Analysis of Complex Disaster Research Trends Using Network Analysis (네트워크 분석을 활용한 국내·외 복합재난 연구 동향 분석)

  • Woosik Kim;Yeonwoo Choi;Youjeong Hong;Dong Keun Yoon
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.908-921
    • /
    • 2022
  • Purpose: As the connection between physical and non-physical structures in cities is expanding and becoming more complex, the risk of complex disaster which causes damage in a complex way is increasing. Preparing for these complex disasters, it is important to preemptively identify and manage disasters that can develop into complex disasters. Therefore, this study analyzes the disaster types studied as complex disasters by analyzing the trends of domestic and international studies related to complex disasters, and presents the direction of complex disaster management in the future. Method: We first established co-occurrence networks between disaster types based on 993 articles related to complex disasters published in disaster-related journals for the last 20 years (2002-2021). Then, through network analysis, domestic and international complex disaster research trends were compared and analyzed. Result: Research on complex disasters related to storm and flood damage, infrastructure failure and fire was high in domestic studies, and it was analyzed that research on complex disasters related to earthquakes and landslides has recently increased. However, in international studies, the proportion of studies on infrastructure failure along with storm and flood damage and earthquake was high, and various types of disasters such as tsunami and drought appeared. Conclusion: The results of this study are expected to increase the understanding of the trends in complex disaster research and provide suggestions of domestic complex disaster research in the future.

Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks

  • Mazloom, Moosa;Tajar, Saeed Farahani;Mahboubi, Farzan
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.401-409
    • /
    • 2020
  • Artificial neural networks are used as a useful tool in distinct fields of civil engineering these days. In order to control long-term quality of Self-Compacting Semi-Lightweight Concrete (SCSLC), the 90 days compressive strength is considered as a key issue in this paper. In fact, combined artificial neural networks are used to predict the compressive strength of SCSLC at 28 and 90 days. These networks are able to re-establish non-linear and complex relationships straightforwardly. In this study, two types of neural networks, including Radial Basis and Multilayer Perceptron, were used. Four groups of concrete mix designs also were made with two water to cement ratios (W/C) of 0.35 and 0.4, as well as 10% of cement weight was replaced with silica fume in half of the mixes, and different amounts of superplasticizer were used. With the help of rheology test and compressive strength results at 7 and 14 days as inputs, the neural networks were used to estimate the 28 and 90 days compressive strengths of above-mentioned mixes. It was necessary to add the 14 days compressive strength in the input layer to gain acceptable results for 90 days compressive strength. Then proper neural networks were prepared for each mix, following which four existing networks were combined, and the combinatorial neural network model properly predicted the compressive strength of different mix designs.

Optimization of Memristor Devices for Reservoir Computing (축적 컴퓨팅을 위한 멤리스터 소자의 최적화)

  • Kyeongwoo Park;HyeonJin Sim;HoBin Oh;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, artificial neural networks have been playing a crucial role and advancing across various fields. Artificial neural networks are typically categorized into feedforward neural networks and recurrent neural networks. However, feedforward neural networks are primarily used for processing static spatial patterns such as image recognition and object detection. They are not suitable for handling temporal signals. Recurrent neural networks, on the other hand, face the challenges of complex training procedures and requiring significant computational power. In this paper, we propose memristors suitable for an advanced form of recurrent neural networks called reservoir computing systems, utilizing a mask processor. Using the characteristic equations of Ti/TiOx/TaOy/Pt, Pt/TiOx/Pt, and Ag/ZnO-NW/Pt memristors, we generated current-voltage curves to verify their memristive behavior through the confirmation of hysteresis. Subsequently, we trained and inferred reservoir computing systems using these memristors with the NIST TI-46 database. Among these systems, the accuracy of the reservoir computing system based on Ti/TiOx/TaOy/Pt memristors reached 99%, confirming the Ti/TiOx/TaOy/Pt memristor structure's suitability for inferring speech recognition tasks.

  • PDF