• Title/Summary/Keyword: Complex networks

Search Result 972, Processing Time 0.031 seconds

Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network (유틸리티 네트워크와 수소 공급망 통합 네트워크 설계를 위한 결정론적 최적화 모델 개발)

  • Hwangbo, Soonho;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.603-612
    • /
    • 2014
  • Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network.

Embedding Binomial Trees in Complete Binary Trees (이항트리의 완전이진트리에 대한 임베딩)

  • 윤수만;최정임형석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.479-482
    • /
    • 1998
  • Whether a given tree is a subgraph of the interconnection network topology is one of the important problem in parallel computing. Trees are used as the underlying structure for divide and conquer algorithms and provide the solution spaces for NP-complete problems. Complete binary trees are the basic structure among those trees. Binomial trees play an important role in broadcasting messages in parallel networks. If binomial trees can be efficiently embedded in complex binary trees, broadcasting algorithms can be effeciently performed on the interconnection networks. In this paper, we present average dilation 2 embedding of binomial trees in complete binary trees.

  • PDF

Human Face Detection from Still Image using Neural Networks and Adaptive Skin Color Model (신경망과 적응적 스킨 칼라 모델을 이용한 얼굴 영역 검출 기법)

  • 손정덕;고한석
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.579-582
    • /
    • 1999
  • In this paper, we propose a human face detection algorithm using adaptive skin color model and neural networks. To attain robustness in the changes of illumination and variability of human skin color, we perform a color segmentation of input image by thresholding adaptively in modified hue-saturation color space (TSV). In order to distinguish faces from other segmented objects, we calculate invariant moments for each face candidate and use the multilayer perceptron neural network of backpropagation algorithm. The simulation results show superior performance for a variety of poses and relatively complex backgrounds, when compared to other existing algorithm.

  • PDF

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

Performance Analysis of Interconnection Network for Multiprocessor Systems (다중프로세서 시스템을 \ulcorner나 상호결합 네트워크의 성능 분석)

  • 김원섭;오재철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.9
    • /
    • pp.663-670
    • /
    • 1988
  • Advances in VLSI technology have made it possible to have a larger number of processing elements to be included in highly parallel processor system. A system with a large number of processing elements and memory requires a complex data path. Multistage Interconnection networks(MINS) are useful in providing programmable data path between processing elements and memory modules in multiprocessor system. In this thesis, the performance of MINS for the star network has been analyzed and compared with other networks, such as generalized shuffle network, delta network, and referenced crossbar network.

  • PDF

Analysis of Network Dynamics from the Roman-Fleuve, Togi (대하소설 토지 등장인물 네트워크의 동적 변화 분석)

  • Kim, Hak Yong
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.519-526
    • /
    • 2012
  • Human-human interaction network derived from Roman-fleuve, Togi was constructed. The network has a scale free properties as if most social networks do. The Togi is excellent model system for analyzing network dynamics because it has various characters and complex their interactions. The novel is composed of well-separated 5 sections. I constructed 5 different sub-netwotks from each section. As employing k-core algorithm as a useful tool for obtaining a core network from the complex networks, it is possible to obtain hidden and valuable information from a complex network. As gradually extending one section to another one, I constructed 4 different extended networks. The final one is whole network from the Togi. These results provide new insight that is analyzed by network-based approaches for network dynamics from literature, Togi.

The development of food image detection and recognition model of Korean food for mobile dietary management

  • Park, Seon-Joo;Palvanov, Akmaljon;Lee, Chang-Ho;Jeong, Nanoom;Cho, Young-Im;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The aim of this study was to develop Korean food image detection and recognition model for use in mobile devices for accurate estimation of dietary intake. MATERIALS/METHODS: We collected food images by taking pictures or by searching web images and built an image dataset for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase the dataset size. The dataset for training contained more than 92,000 images categorized into 23 groups of Korean food. All images were down-sampled to a fixed resolution of $150{\times}150$ and then randomly divided into training and testing groups at a ratio of 3:1, resulting in 69,000 training images and 23,000 test images. We used a Deep Convolutional Neural Network (DCNN) for the complex recognition model and compared the results with those of other networks: AlexNet, GoogLeNet, Very Deep Convolutional Neural Network, VGG and ResNet, for large-scale image recognition. RESULTS: Our complex food recognition model, K-foodNet, had higher test accuracy (91.3%) and faster recognition time (0.4 ms) than those of the other networks. CONCLUSION: The results showed that K-foodNet achieved better performance in detecting and recognizing Korean food compared to other state-of-the-art models.

An Optimal Schedule Algorithm Trade-Off Among Lifetime, Sink Aggregated Information and Sample Cycle for Wireless Sensor Networks

  • Zhang, Jinhuan;Long, Jun;Liu, Anfeng;Zhao, Guihu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.227-237
    • /
    • 2016
  • Data collection is a key function for wireless sensor networks. There has been numerous data collection scheduling algorithms, but they fail to consider the deep and complex relationship among network lifetime, sink aggregated information and sample cycle for wireless sensor networks. This paper gives the upper bound on the sample period under the given network topology. An optimal schedule algorithm focusing on aggregated information named OSFAI is proposed. In the schedule algorithm, the nodes in hotspots would hold on transmission and accumulate their data before sending them to sink at once. This could realize the dual goals of improving the network lifetime and increasing the amount of information aggregated to sink. We formulate the optimization problem as to achieve trade-off among sample cycle, sink aggregated information and network lifetime by controlling the sample cycle. The results of simulation on the random generated wireless sensor networks show that when choosing the optimized sample cycle, the sink aggregated information quantity can be increased by 30.5%, and the network lifetime can be increased by 27.78%.

A Study on Application of Reinforcement Learning Algorithm Using Pixel Data (픽셀 데이터를 이용한 강화 학습 알고리즘 적용에 관한 연구)

  • Moon, Saemaro;Choi, Yonglak
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.85-95
    • /
    • 2016
  • Recently, deep learning and machine learning have attracted considerable attention and many supporting frameworks appeared. In artificial intelligence field, a large body of research is underway to apply the relevant knowledge for complex problem-solving, necessitating the application of various learning algorithms and training methods to artificial intelligence systems. In addition, there is a dearth of performance evaluation of decision making agents. The decision making agent that can find optimal solutions by using reinforcement learning methods designed through this research can collect raw pixel data observed from dynamic environments and make decisions by itself based on the data. The decision making agent uses convolutional neural networks to classify situations it confronts, and the data observed from the environment undergoes preprocessing before being used. This research represents how the convolutional neural networks and the decision making agent are configured, analyzes learning performance through a value-based algorithm and a policy-based algorithm : a Deep Q-Networks and a Policy Gradient, sets forth their differences and demonstrates how the convolutional neural networks affect entire learning performance when using pixel data. This research is expected to contribute to the improvement of artificial intelligence systems which can efficiently find optimal solutions by using features extracted from raw pixel data.

Load Allocation Strategy for Command and Control Networks based on Interdependence Strength

  • Bo Chen;Guimei Pang;Zhengtao Xiang;Hang Tao;Yufeng Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2419-2435
    • /
    • 2023
  • Command and control networks(C2N) exhibit evident multi-network interdependencies owing to their complex hierarchical associations, interleaved communication links, and dynamic network changes. However, the existing command and control networks do not consider the effects of dependent nodes on the load distribution. Thus, we proposed a command and control networks load allocation strategy based on interdependence strength. First, a new measure of interdependence strength was proposed based on the edge betweenness, which was followed by proposing the inter-layer load allocation strategy based on the interdependence strength. Eventually, the simulation experiments of the aforementioned strategy were designed to analyze the network invulnerability with different initial load capacity parameters, allocation model parameters, and allocation strategies. The simulation indicates that the strategy proposed in this study improved the node survival rate of the interdependent command and control networks model and successfully prevented cascade failures.