• Title/Summary/Keyword: Complex network theory

Search Result 99, Processing Time 0.026 seconds

A Study on Optimal Duration Estimation for Construction Activity

  • Cho, Bit Na;Kim, Young Hwan;Kim, Min Seo;Jeong, Tae Woon;Kim, Chang Hak;Kang, Leen Seok
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.612-613
    • /
    • 2015
  • As a construction project is recently becoming large-scaled and complex, construction process plan and management for successful performance of a construction project has become more important. Especially a reasonable estimation plan of activity duration is required because the activity duration is directly related to the determination of the entire project duration and budget. However, the activity duration is used to estimate by the experience of a construction manager and past construction records. Furthermore, the prediction of activity duration is more difficult because there is some uncertainty caused by various influencing factors in a construction project. This study suggests an estimation model of construction activity duration using neural network theory for a more systematic and objective estimation of each activity duration. Because suggested model estimates the activity duration by a reasonable schedule plan, it is expected to reduce the error between planning duration and actual duration in a construction project. And it can be a more systematic estimation method of activity duration comparing to the estimation method by experience of project manager.

  • PDF

AGENT-BASED SIMULATION OF ORGANIZATIONAL DYNAMICS IN CONSTRUCTION PROJECT TEAMS

  • JeongWook Son;Eddy M. Rojas
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.439-444
    • /
    • 2011
  • As construction projects have been getting larger and more complex, a single individual or organization cannot have complete knowledge or the abilities to handle all matters. Collaborative practices among heterogeneous individuals, which are temporarily congregated to carry out a project, are required in order to accomplish project objectives. These organizational knowledge creation processes of project teams should be understood from the active and dynamic viewpoint of how they create information and knowledge rather than from the passive and static input-process-output sequence. To this end, agent-based modeling and simulation which is built from the ground-up perspective can provide the most appropriate way to systematically investigate them. In this paper, agent-based modeling and simulation as a research method and a medium for representing theory is introduced. To illustrate, an agent-based simulation of the evolution of collaboration in large-scale project teams from a game theory and social network perspective is presented.

  • PDF

A Study on Socio-technical System for Sustainability of the 4th Industrial Revolution: Machine Learning-based Analysis

  • Lee, Jee Young
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.204-211
    • /
    • 2020
  • The era of the 4th industrial revolution is a complex environment in which the cyber world and the physical world are integrated and interacted. In order to successfully implement and be sustainable the 4th industrial revolution of hyper-connectivity, hyper-convergence, and hyper-intelligence, not only the technological aspects that implemented digitalization but also the social aspects must be recognized and dealt with as important. There are socio-technical systems and socio-technical systems theory as concepts that describe systems involving complex interactions between the environmental aspects of human, mechanical and tissue systems. This study confirmed how the Socio-technical System was applied in the research literature for the last 10 years through machine learning-based analysis. Eight clusters were derived by performing co-occurrence keywords network analysis, and 13 research topics were derived and analyzed by performing a structural topic model. This study provides consensus and insight on the social and technological perspectives necessary for the sustainability of the 4th industrial revolution.

Booming Index Development in a Passenger Car (승용차 부우밍 인덱스 개발에 관한 연구)

  • Chae, Hee-Chang;Lee, Sang-Kwon;Park, Dong-Chul;Jung, Seung-Gyoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.273-278
    • /
    • 2002
  • Booming sound is one of the most important interior sound of a passenger car. The conventional booming noise research was focused on the reduction of the A-weighted sound pressure level. However A-weighted sound pressure level can not give the whole story about the booming sound of a passenger car. In this paper, we employed sound metric which is the subjective parameter used in psycoacoustics. According to recent research results, the relation between sound metrics and subjective evaluation is very complex and has nonlinear characteristics. In order to estimate this nonlinear relationship, artificial neural network theory has been applied to derivation of sound quality index for booming sound of a passenger car.

  • PDF

A Comparative Study of Image Recognition by Neural Network Classifier and Linear Tree Classifier (신경망 분류기와 선형트리 분류기에 의한 영상인식의 비교연구)

  • Young Tae Park
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.141-148
    • /
    • 1994
  • Both the neural network classifier utilizing multi-layer perceptron and the linear tree classifier composed of hierarchically structured linear discriminating functions can form arbitrarily complex decision boundaries in the feature space and have very similar decision making processes. In this paper, a new method for automatically choosing the number of neurons in the hidden layers and for initalzing the connection weights between the layres and its supporting theory are presented by mapping the sequential structure of the linear tree classifier to the parallel structure of the neural networks having one or two hidden layers. Experimental results on the real data obtained from the military ship images show that this method is effective, and that three exists no siginificant difference in the classification acuracy of both classifiers.

  • PDF

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연;서운학;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.279-279
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts fur the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell fur automatic test and assembling in S company.

  • PDF

The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System (유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용)

  • 최재호;오성권;안태천;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

Digital Competence As A Component Of Professional And Information Culture Of A Teacher

  • Kharlamov, Mykhailo;Sinelnikov, Ivan;Lysenko, Vladyslav;Yakobenchuk, Nazar;Tkach, Anna;Honcharuk, Оlena
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.169-172
    • /
    • 2021
  • Based on the scientific and pedagogical analysis of the theory and experience of teaching computer science disciplines, the didactic mechanism for ensuring the continuity of the average (full) general and higher professional education of economists for practical implementation innovative technology of personal experience foundation. The pedagogical conditions for the formation of information competence, including laboratory, design, research work, the use of active teaching methods for acquiring management skills in production and activities of the enterprise. An indispensable requirement for the conditions for the implementation of basic of educational programs is the assessment of competencies. With this the goal was to develop criteria and levels of formation information competence of future economists and carried out complex diagnostics.

Absolute-Fair Maximal Balanced Cliques Detection in Signed Attributed Social Network (서명된 속성 소셜 네트워크에서의 Absolute-Fair Maximal Balanced Cliques 탐색)

  • Yang, Yixuan;Peng, Sony;Park, Doo-Soon;Lee, HyeJung
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.9-11
    • /
    • 2022
  • Community detection is a hot topic in social network analysis, and many existing studies use graph theory analysis methods to detect communities. This paper focuses on detecting absolute fair maximal balanced cliques in signed attributed social networks, which can satisfy ensuring the fairness of complex networks and break the bottleneck of the "information cocoon".

Energy-Aware Preferential Attachment Model for Wireless Sensor Networks with Improved Survivability

  • Ma, Rufei;Liu, Erwu;Wang, Rui;Zhang, Zhengqing;Li, Kezhi;Liu, Chi;Wang, Ping;Zhou, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3066-3079
    • /
    • 2016
  • Recent years have witnessed a dramatic increase in topology research of wireless sensor networks (WSNs) where both energy consumption and survivability need careful consideration. To balance energy consumption and ensure survivability against both random failures and deliberate attacks, we resort to complex network theory and propose an energy-aware preferential attachment (EPA) model to generate a robust topology for WSNs. In the proposed model, by taking the transmission range and energy consumption of the sensor nodes into account, we combine the characters of Erdős -Rényi (ER) model and Barabasi-Albert (BA) model in this new model and introduce tunable coefficients for balancing connectivity, energy consumption, and survivability. The correctness of our theoretic analysis is verified by simulation results. We find that the topology of WSNs built by EPA model is asymptotically power-law and can have different characters in connectivity, energy consumption, and survivability by using different coefficients. This model can significantly improve energy efficiency as well as enhance network survivability by changing coefficients according to the requirement of the real environment where WSNs deployed and therefore lead to a crucial improvement of network performance.