Proceedings of the Korean Society of Precision Engineering Conference
/
2003.06a
/
pp.1907-1910
/
2003
Miniaturized machine tool can be used to produce 3D features based on CNC and PC-NC technology in the micro/meso scale. Wide applications of CNC technology are developed and there are lots of know-hows in the cutting process and their CNC application. It helps micro/meso scale structure to machine components, which can be used directly for practical applications. In the present research, as the machine tool is miniaturized, the manufacturing machine tools costs less when compared to the equipment used in other micromachining technologies. Moreover, with advancement of micro tool technology, the cutting process can be used to produce micro/meso scale parts. In conclusion, the proposed system can reduce the cost by utilizing the current machining technology, and as a result, complex micro/meso parts can be produced efficiently with high productivity.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
1999.10a
/
pp.579-584
/
1999
The purpose of the present paper are not to develope machine tools of new concepts and advanced mechanisms but to introduce and apply new methods and concepts in the design procedure by using and changing the previously existing technologies. In this paper 3D modeller was proposed for designing machine tools and the design and the better manufacturability checking than 2D one so that design error was dramatically reduced. As designer may easily understand the real shape of a part and assembly object, it's easy to draw the drawings not only in a conceptual design but also in a detailed design. Also, design automation software enabled designer to consider the real important design parameters by reducing time to spend in estimating and calculating the strength of the model by the computer aided automatic calculation instead of a tedious and complex calculation by manual method and help him to easily make the decision for selecting the stocks and design the structure of part or unit of machine tools.
This paper proposes a new prediction method to reduce times and labor of repetitive multi-physics simulation. To achieve exact results from the whole simulation processes, complex modeling and huge amounts of time are required. Current multi-physics analysis focuses on the simulation method itself and the simulation environment to reduce times and labor. However this paper proposes an alternative way to reduce simulation times and labor by exploiting machine learning algorithm trained with data set from simulation results. Through comparing each machine learning algorithm, Gaussian Process Regression showed the best performance with under 100 training data and how similar results can be achieved through machine-learning without a complex simulation process. Given trained machine learning algorithm, it's possible to predict the result after changing some features of the simulation model just in a few second. This new method will be helpful to effectively reduce simulation times and labor because it can predict the results before more simulation.
Arvind, Varun;Kim, Jun S.;Oermann, Eric K.;Kaji, Deepak;Cho, Samuel K.
Neurospine
/
v.15
no.4
/
pp.329-337
/
2018
Objective: Machine learning algorithms excel at leveraging big data to identify complex patterns that can be used to aid in clinical decision-making. The objective of this study is to demonstrate the performance of machine learning models in predicting postoperative complications following anterior cervical discectomy and fusion (ACDF). Methods: Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), and random forest decision tree (RF) models were trained on a multicenter data set of patients undergoing ACDF to predict surgical complications based on readily available patient data. Following training, these models were compared to the predictive capability of American Society of Anesthesiologists (ASA) physical status classification. Results: A total of 20,879 patients were identified as having undergone ACDF. Following exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for testing data sets. ANN and LR consistently outperformed ASA physical status classification in predicting every complication (p < 0.05). The ANN outperformed LR in predicting venous thromboembolism, wound complication, and mortality (p < 0.05). The SVM and RF models were no better than random chance at predicting any of the postoperative complications (p < 0.05). Conclusion: ANN and LR algorithms outperform ASA physical status classification for predicting individual postoperative complications. Additionally, neural networks have greater sensitivity than LR when predicting mortality and wound complications. With the growing size of medical data, the training of machine learning on these large datasets promises to improve risk prognostication, with the ability of continuously learning making them excellent tools in complex clinical scenarios.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.27
no.8
/
pp.98-104
/
2013
AC machines are in wide use in industry and d-q transformation from 3 phase of a, b, c is commonly used to analyze these kinds of machines. The equivalent circuits of d and q axis are, however, generally cross coupled and difficult to analyze. In this study, a modeling technique of AC machine including induction and PM synchronous motors using matrix vector is proposed. With that model, it can not only explain the AC machines physically but also make it simple to analyze them. The separating process of d and q components is not needed in this model and this model can be applied to analyze asymmetric motors like IPMSM machine. With this technique, the model becomes simple, easy to understand physically, and yields results that are the same as those from other models. These simulation results of the proposed model for induction motor are compared with those of other models to verify the method proposed.
Proceedings of the Korean Society of Precision Engineering Conference
/
1997.04a
/
pp.332-336
/
1997
To order to remain competitive, a manufacturing company need to maintain the optimal condition of its manufacturing system. Machine tools as an important element of a manufacturing system comprises complex mechanical as well as electronic components. So, diagnosing the troubles of machine tools is tricky process which requires a lot of experience and knowledge. Since providing machine tool users with necessary serices at the right time is very difficult,a remote diagnosis system is to be regarded as a good alternative, with which users can diagnose and fix the machine troubles. This paper presents a method to implement a remote machine tool diagnosis system using the world wide web technology and backward reasoning expert system.
Journal of the Korean Society of Industry Convergence
/
v.22
no.6
/
pp.627-635
/
2019
In this study, we developed for processing complex features using CAM software that satisfies precision for example practice and related qualification tests suiTable for CNC training purposes. In addition, functions such as location control, speed control, and processing path generation, which are the main functions of CNC machining machines, were constructed using small equipment parts, servo motors, inverters, general purpose PCs, and commercial NC software and researched with the goal of developing low-cost education equipment. In the static accuracy inspection, the degree of machine when measuring the parallelism of the X, Y and Z axes and the vibration of the main shaft did not reach the allowable value. However, we have obtained a finished product that satisfies the CNC machine book sample shape machining, detailed functions of the position control function of the CNC machine tool, linear interpolation function, circular interpolation function, and tool offset function. In the qualification test shape processing, a shape with a degree of 1/100 mm was processed to obtain position accuracy that satisfied the tolerance.
Unified Modeling Language (UML) is widely accepted in industry and particularly UML State Machine Diagram is popular for describing the dynamic behavior of classes. This paper discusses deadlock detection of System using UML State Machine Diagram. Since a State Machine Diagram is used for indivisual class' behavior, all the State Machine Diagrams of the classes in the system are combined to make a big system-wide State Machine Diagram to describe system behavior. Generally this system-wide State Machine Diagram is very complex and contains invalid state and transitions. To make it a usable and valid State Machine Diagram, synchronization and externalization are applied. The reduced State Machine Diagram can be used for describing system behavior thus conventional model-checking technique can be applied. This paper shows how deadlock detection of system can be applied with simple examples. All the procedures can be automatically done in the tool.
The vibrations and noise origin in electric material is due to several coupled physical phenomena. The revolving electric machine complete modeling is complex; it does not allow simple parametric machine structure studies for various operation modes. This work presents a simple electromagnetic model which makes possible the machine principal parts flow estimation from flux density. Special interest is given in determining Switched Reluctance Machine (S.R.M) radial acceleration in accordance with the current supply. Our focus will be only on the magnetic origin efforts that are dominating in the S.R.M. The efforts calculation versus the current is presented in the case of a machine with a linearized rate. These efforts are considered as a tangential force producing the torque and a radial force that generates no torque. The application is realized on a 6/4 low power S.R.M type (6 stator teeth and 4 teeth rotor). The mechanical response is substituted in a transfer function. The model takes account of the power supply of the machine, the relation between the current supply and the efforts as well as the vibratory response of the machine to these efforts. Finally, the model is validated by comparison with similar experimental results within the framework of the definite assumptions.
A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.