• 제목/요약/키워드: Complex field

검색결과 2,627건 처리시간 0.031초

뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구 (A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network)

  • 양윤석;이현준;오경주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.25-38
    • /
    • 2019
  • 정보화 시대의 넘쳐나는 콘텐츠들 속에서 사용자의 관심과 요구에 맞는 양질의 정보를 선별해내는 과정은 세대를 거듭할수록 더욱 중요해지고 있다. 정보의 홍수 속에서 사용자의 정보 요구를 단순한 문자열로 인식하지 않고, 의미적으로 파악하여 검색결과에 사용자 의도를 더 정확하게 반영하고자 하는 노력이 이루어지고 있다. 구글이나 마이크로소프트와 같은 대형 IT 기업들도 시멘틱 기술을 기반으로 사용자에게 만족도와 편의성을 제공하는 검색엔진 및 지식기반기술의 개발에 집중하고 있다. 특히 금융 분야는 끊임없이 방대한 새로운 정보가 발생하며 초기의 정보일수록 큰 가치를 지녀 텍스트 데이터 분석과 관련된 연구의 효용성과 발전 가능성이 기대되는 분야 중 하나이다. 따라서, 본 연구는 주식 관련 정보검색의 시멘틱 성능을 향상시키기 위해 주식 개별종목을 대상으로 뉴럴 텐서 네트워크를 활용한 지식 개체명 추출과 이에 대한 성능평가를 시도하고자 한다. 뉴럴 텐서 네트워크 관련 기존 주요 연구들이 추론을 통해 지식 개체명들 사이의 관계 탐색을 주로 목표로 하였다면, 본 연구는 주식 개별종목과 관련이 있는 지식 개체명 자체의 추출을 주목적으로 한다. 기존 관련 연구의 문제점들을 해결하고 모형의 실효성과 현실성을 높이기 위한 다양한 데이터 처리 방법이 모형설계 과정에서 적용되며, 객관적인 성능 평가를 위한 실증 분석 결과와 분석 내용을 제시한다. 2017년 5월 30일부터 2018년 5월 21일 사이에 발생한 전문가 리포트를 대상으로 실증 분석을 진행한 결과, 제시된 모형을 통해 추출된 개체명들은 개별종목이 이름을 약 69% 정확도로 예측하였다. 이러한 결과는 본 연구에서 제시하는 모형의 활용 가능성을 보여주고 있으며, 후속 연구와 모형 개선을 통한 성과의 제고가 가능하다는 것을 의미한다. 마지막으로 종목명 예측 테스트를 통해 본 연구에서 제시한 학습 방법이 새로운 텍스트 정보를 의미적으로 접근하여 관련주식 종목과 매칭시키는 목적으로 사용될 수 있는 가능성을 확인하였다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로 (A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github)

  • 정지선;김동성;이홍주;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2019
  • 제4차 산업혁명을 이끄는 주요 원동력 중 하나인 인공지능 기술은 이미지와 음성 인식 등 여러 분야에서 사람과 유사하거나 더 뛰어난 능력을 보이며, 사회 전반에 미치게 될 다양한 영향력으로 인하여 높은 주목을 받고 있다. 특히, 인공지능 기술은 의료, 금융, 제조, 서비스, 교육 등 광범위한 분야에서 활용이 가능하기 때문에, 현재의 기술 동향을 파악하고 발전 방향을 분석하기 위한 노력들 또한 활발히 이루어지고 있다. 한편, 이러한 인공지능 기술의 급속한 발전 배경에는 학습, 추론, 인식 등의 복잡한 인공지능 알고리즘을 개발할 수 있는 주요 플랫폼들이 오픈 소스로 공개되면서, 이를 활용한 기술과 서비스들의 개발이 비약적으로 증가하고 있는 것이 주요 요인 중 하나로 확인된다. 또한, 주요 글로벌 기업들이 개발한 자연어 인식, 음성 인식, 이미지 인식 기능 등의 인공지능 소프트웨어들이 오픈 소스 소프트웨어(OSS: Open Sources Software)로 무료로 공개되면서 기술확산에 크게 기여하고 있다. 이에 따라, 본 연구에서는 온라인상에서 다수의 협업을 통하여 개발이 이루어지고 있는 인공지능과 관련된 주요 오픈 소스 소프트웨어 프로젝트들을 분석하여, 인공지능 기술 개발 현황에 대한 보다 실질적인 동향을 파악하고자 한다. 이를 위하여 깃허브(Github) 상에서 2000년부터 2018년 7월까지 생성된 인공지능과 관련된 주요 프로젝트들의 목록을 검색 및 수집하였으며, 수집 된 프로젝트들의 특징과 기술 분야를 의미하는 토픽 정보들을 대상으로 텍스트 마이닝 기법을 적용하여 주요 기술들의 개발 동향을 연도별로 상세하게 확인하였다. 분석 결과, 인공지능과 관련된 오픈 소스 소프트웨어들은 2016년을 기준으로 급격하게 증가하는 추세이며, 토픽들의 관계 분석을 통하여 주요 기술 동향이 '알고리즘', '프로그래밍 언어', '응용분야', '개발 도구'의 범주로 구분하는 것이 가능함을 확인하였다. 이러한 분석 결과를 바탕으로, 향후 다양한 분야에서의 활용을 위해 개발되고 있는 인공지능 관련 기술들을 보다 상세하게 구분하여 확인하는 것이 가능할 것이며, 효과적인 발전 방향 모색과 변화 추이 분석에 활용이 가능할 것이다.

머신러닝과 KSCA를 활용한 디지털 사진의 색 분석 -한국 자연 풍경 낮과 밤 사진을 중심으로- (Color Analyses on Digital Photos Using Machine Learning and KSCA - Focusing on Korean Natural Daytime/nighttime Scenery -)

  • 권희은;구자준
    • 트랜스-
    • /
    • 제12권
    • /
    • pp.51-79
    • /
    • 2022
  • 본 연구에서는 색채 계획을 통해 콘텐츠를 제작할 때 참고할 만한 색을 도출하는 방법을 모색하기 위하여 진행되었다. 대상이 된 이미지는 한국 내의 자연풍광을 다룬 사진들로 머신러닝을 활용해 낮과 밤이 어떤 색으로 표현되는지 알아보고, KSCA를 통해 색 빈도를 도출하여 두 결과를 비교, 분석하였다. 낮과 밤 사진의 색을 머신러닝으로 구분한 결과, 51~100%로 구분했을 때, 낮의 색의 영역이 밤의 색보다 2.45배가량 더 많았다. 낮 class의 색은 white를 중심으로, 밤 class의 색은 black을 중심으로 명도에 따라 분포하였다. 낮 class 70%이상의 색이 647, 밤 class 70% 이상의 색이 252, 나머지(31-69%)가 101개로서 중간 영역의 색의 수는 적고 낮과 밤으로 비교적 뚜렷하게 구분되었다. 낮과 밤 class의 색 분포 결과를 통해 명도로 구분되는 두 class의 경계 색채값이 무엇인지 확인할 수 있었다. KSCA를 활용해 디지털 사진의 빈도를 분석한 결과는 전체적으로 밝은 낮 사진에서는 황색, 어두운 밤 사진에서는 청색 위주의 색이 표현되었음을 보여주었다. 낮 사진 빈도에서는 상위 40%에 해당하는 색이 거의 무채색에 가까울 정도로 채도가 낮았다. 또 white & black에 가까운 색이 가장 높은 빈도를 보여 명도차가 크다는 것을 알 수 있었다. 밤 사진의 빈도를 보면 상위 50% 가량 되는 색이 명도 2(먼셀 기호)에 해당하는 어두운 색이다. 그에 비해 빈도 중위권(50~80%)의 명도는 상대적으로 조금 높고(명도 3-4), 하위 20%에서는 여러 색들의 명도차가 크다. 난색들은 빈도 하위 8% 이내에서 간헐적으로 볼 수 있었다. 배색띠를 보았을 때, 전체적으로 남색을 위주로 조화로운 배색을 이루고 있었다. 본 연구의 색의 분포와 빈도의 결과값은 한국 내의 자연 풍경에 관한 디지털 디자인의 색채 계획에 참고 자료로 활용될 수 있을 것이다. 또한 색 분포를 나눈 결과는 해당색이 특정 디자인의 주조색이나 배경색으로 사용될 경우에 두 class 중 어느 쪽에 더 가까운 색인지에 대해 참고사항이 될 수 있을 것이며, 분석 이미지들을 몇 가지 class로 나눈다면, 각 class의 색 분포의 특성에 따라 분석 이미지에 사용되지 않은 색도 어느 class에 얼마큼 더 가까운 이미지인지 도출할 수 있을 것이다.

네덜란드의 혁신클러스터정책과 시사점 (The Innovation Ecosystem and Implications of the Netherlands.)

  • 김영우
    • 벤처혁신연구
    • /
    • 제5권1호
    • /
    • pp.107-127
    • /
    • 2022
  • 본 연구는 네덜란드의 지역별 혁신 클러스터정책을 통해 네덜란드 경제의 성장동인을 찾고자 한다. 전통적으로 농업과 물류중심의 경제구조를 가진 네덜란드는 1990년대 지역 클러스터를 만들면서 첨단 허브 국가로서 역할을 충실하게 해왔고 작은 나라임에도 세계 수출의 7위를 차지하는 등 혁신국가의 이미지를 만드는데 성공했다. 그 바탕에는 혁신을 위한 체계적인 분석 접근법으로 '지역 혁신 시스템(Rational Innovation System)'의 개념을 도입하고 지역의 특색을 살린 산학연 모델이 가장 큰 요인으로 작용했다. 여기에는 적절한 중앙정부의 혁신 생태계 조성을 위한 정책적 방향 제시와 지역을 중심으로 한 산학연 모델이 크게 작용한 것으로 평가받고 있다. 이런 점을 종합적으로 살펴 볼 때 본고에서는 다음과 같은 시사점을 발견할 수 있다. 첫째, 혁신 클러스터의 활성화이다. 둘째, Top 9을 중심으로 한 신산업육성정책과 미래산업 전략을 활성화하고 있다. 셋째, 산학연 협력을 구체화하고 있다. 넷째, 스타트업의 창업을 육성하고 있다. 이를 종합하면 네덜란드는 2019년 설립된 TechLeap은 네덜란드의 기술 생태계를 정량화하고 가속화하는 데 도움을 주는데 자본, 시장 및 인재에 대한 접근성을 개선하기 위한 프로그램 및 이니셔티브를 통해 기술 기업이 확장할 수 있는 최적의 환경을 조성해 네덜란드를 미래의 기술 선도기업들을 위한 보금자리로 만들기 위해 노력하고 있다. 첨단농업과 물류국가로 알려진 네덜란드는 4차 산업혁명시대를 맞이하여 로테르담을 중심으로 하는 물류의 항구에서 ICT 기술을 기반으로 하는 '지식항구(brainport)'로 확장하고 있다. 네덜란드는 물류 국가에서 산업화에 성공했지만 최근 지역혁신 생태계를 만들기 위한 중앙정부의 비전 제시와 지역의 특화산업을 연계한 산학연 클러스터 모델이 가장 큰 디딤돌 역할을 하고 있음을 확인할 수 있다. 네덜란드의 혁신정책은 혁신 클러스터 생태계를 중심으로 지역을 개발하고 일자리 창출과 새로운 산업을 위한 투자를 통해 유럽의 '디지털 관문'으로서 역할에 보다 충실할 것으로 전망된다.

새로운 결제서비스의 성공요인: 다중사례연구 (Critical Success Factor of Noble Payment System: Multiple Case Studies)

  • 박아름;이경전
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.59-87
    • /
    • 2014
  • 결제서비스에 대한 기존의 연구는 결제서비스의 채택요인 또는 지속적인 사용에 영향을 미치는 요인 등 행동이론을 중심으로 진행되어 왔다. 이러한 요인들이 미치는 영향에 대한 결과는 결제서비스의 종류에 따라 또는 연구 지역에 따라 상이하게 나타나고 있다. 본 연구는 결제 서비스의 종류나 문화등의 변수에 관계없이 새로운 결제 서비스가 성공할 수 있는 일반적인 요인이 무엇인지에 대한 의문에서 시작하게 되었다. 기존 연구에서 중요한 영향을 미친다고 제시한 채택요인들은 실제 결제사례의 결과에 비추어 보면 기존 연구에서 주장한 바와 일치하지 않는 경우를 볼 수 있다. 이러한 이론과 현실사이의 괴리를 발견하고 새로운 결제서비스가 성공하기 위한 근본적이고 결정적인 요인이 무엇인지에 대해 제시하고 사례연구를 통해 가설을 입증하고자 하는 것이 본 연구의 목적이다. 따라서 본 연구는 새로운 결제서비스가 성공하기 위해서는 기존 결제서비스의 비고객에게 이들이 결제할 수 있는 수단을 제공함으로써 새로운 결제 시장을 창출해야 함을 주장한다. 이를 위해 성공한 결제사례인 신용카드, 휴대폰 소액결제, PayPal, Square을 채택하였으며, 기존 결제서비스의 비고객을 3개의 계층으로 분류하여 분석하였다. 그리고 새로운 결제서비스가 어떠한 계층을 타겟으로 하였으며 이들에게 어떠한 결제수단을 제공하여 새로운 시장을 창출하였는지 제시한다. 사례 분석 결과, 성공 사례 모두 본 연구의 가설을 지지하는 것으로 나타났다. 따라서 새로운 결제서비스는 결국 기존의 결제수단으로 거래를 할 수 없었던 이들이 결제를 할 수 있도록 함으로써 성공할 수 있다는 가설을 입증하였다. 모바일 결제서비스가 아직 대중화되지 못한 원인을 본 가설에 비추어 분석해 보면 보면, 기존의 결제 인프라를 이용할 수 있는 바코드, QR코드 기반의 모바일 결제 서비스뿐만 아니라 NFC, BLE, 음파 등의 새로운 기술이 적용된 모바일 결제 서비스가 출시되는 등 새로운 시도가 계속되고 있다. 또한 모바일 월렛은 사용자들이 소지하고 있는 카드정보를 스마트폰에 저장하여 지갑 없이도 결제가 가능하며, 쿠폰 제공, 적립카드 관리, 신분증을 저장하는 등의 다양한 부가적인 기능을 제공하고 있어 성공할 것이라는 전망이 대두되고 있다. 하지만 이러한 서비스들은 본 연구 관점에서 보자면 기존 결제서비스의 비고객이(기존 결제수단을 이용할 수 없었던 사용자) 거래할 수 있는 새로운 결제 수단을 제공해 주지 못하고 있기 때문에 결국 초기사용자에게만 채택될 뿐 대중화되는데 한계가 있을 것으로 예상된다. 반면, 새로운 모바일 결제서비스의 성공사례 중 하나인 PaybyPhone은 기존 코인주차 결제서비스의 비고객인 현금 미소지 고객에게 스마트폰을 이용한 새로운 결제수단을 제공함으로써 새로운 주차 결제 시장을 창출하였으며 현재 미국뿐만 아니라 유럽시장까지 진출하는 등 급성장하고 있다. 결론적으로, 많은 이해관계자들이 모바일 결제시장을 선점하기 위해 다양한 형태의 모바일 결제 서비스를 출시하고 있지만 캐즘을 뛰어넘어 주류 시장에 성공적으로 정착할 수 있느냐는 결국 기존 결제서비스의 비고객군에게 그들이 필요로 하는 새로운 결제수단을 제공하는지의 여부에 달려있다고 볼 수 있다. 따라서 모바일 결제 서비스의 기획자나 매니저들은 서비스 기획 시 기존 결제서비스의 비고객군은 누구인가? 그들은 어떠한 결제수단을 원하는가?를 먼저 고려해야 한다. 본 연구는 새로운 결제서비스가 성공하는데 미치는 요인에 대한 가설을 검증하기 위해 4개의 성공사례를 선택하였으며 각 사례에 동일한 가설을 검증하는 '반복연구논리'를 적용하였다. 본 가설을 더욱 공고히 하기 위해 사례연구방법론에서 제시하고 있는 경쟁가설을 포함한 후속 사례연구가 진행되어야 할 것이다.

한·중 FTA가 항공운송 부문에 미치는 영향과 우리나라 항공정책의 방향 (The Effect on Air Transport Sector by Korea-China FTA and Aviation Policy Direction of Korea)

  • 이강빈
    • 항공우주정책ㆍ법학회지
    • /
    • 제32권1호
    • /
    • pp.83-138
    • /
    • 2017
  • 한 중 FTA가 2015년 12월 20일 발효되었고, 우리나라 제1위의 교역상대국인 중국과의 FTA로서 발효된 후 1년이 경과하였다. 따라서 본 연구에서는 한국과 중국 간 항공운송 교역 동향을 살펴보고, 한 중 FTA의 항공운송서비스 부문에 대한 양허내용을 검토하고, 항공운송 부문에 미치는 영향을 분석하며, 이에 대응하기 위한 우리나라 항공정책의 방향을 도출하여 제시하고자 한다. 2016년 한 중 간 항공운송 교역 동향을 살펴보면, 대중국 항공운송 수출액은 전년대비 9.3% 감소한 400.3억 달러로서, 대중국 전체 수출액의 32.2%를 차지하고 있다. 대중국 항공운송 수입액은 전년대비 9.1% 감소한 242.6억 달러로서, 대중국 전체 수입액의 27.7%를 차지하고 있다. 한 중 FTA의 항공운송서비스 부문 양허내용을 검토해 보면, 중국은 한 중 FTA 협정문 제8장 부속서 중국의 양허표에서 항공운송서비스 분야의 항공기 보수 및 유지 서비스, 컴퓨터 예약시스템(CRS)서비스에 대하여 시장접근과 내국민대우에 대한 제한을 두고 양허하였다. 한국은 한 중 FTA 협정문 제8장 부속서 한국의 양허표에서 항공운송서비스 분야의 컴퓨터 예약시스템서비스, 항공운송서비스의 판매 및 마케팅, 항공기 유지 및 보수 서비스에 대하여 시장접근과 내국민대우에 대한 제한을 두지 않고 양허하였다. 한 중 FTA가 항공운송 부문에 미치는 영향을 분석해 보면, 항공여객시장에 미친 영향으로, 2016년 국제선 중국노선 도착여객은 996만 명으로 전년대비 20.6% 증가하였고, 출발여객은 990만 명으로 전년대비 34.8% 증가하였다. 항공화물시장에 미친 영향으로, 2016년 대중국 항공화물 수출물동량은 105,220.2톤으로 전년대비 6.6% 증가하였고, 수입물동량은 133,750.9톤으로 전년대비 12.3% 증가하였다. 대중국 수출 항공화물 주요품목가운데 한 중 FTA 협정문 중국 관세양허표 상 수혜품목의 수출물동량이 증가하였고, 대중국 수입항공화물 주요품목가운데 한 중 FTA 한국 관세양허표 상 수혜품목의 수입물 동량이 증가하였다. 항공물류시장에 미친 영향으로 2016년 국내 포워더의 대중국 수출 항공화물 취급실적은 119,618톤으로 전년대비 2.1% 감소하였고, 대중국 수입 항공화물 취급실적은 79,430톤으로 전년대비 4.4% 감소하였다. 2016년 대중국 역직구(전자상거래 수출) 수출금액은 1억 916만 달러로 전년대비 27.7% 증가하였고, 대중국직구(전자상거래 수입) 수입금액은 8,943만 달러로 전년대비 72% 증가하였다. 한 중 FTA에 따른 우리나라 항공정책의 방향을 도출하여 제시해 보면 다음과 같다. 첫째 한 중 간에 항공자유화를 추진한다. 한국과 중국은 2006년 6월 중국의 산동성과 해남성에 대해 여객 및 화물 제3자유 및 제4자유를 범위로 하는 항공자유화 협정을 체결하였으며, 2010년 하계부터 양국 간 항공운항을 전면 자유화하기로 합의하였으나, 중국 측에서 항공협정 양해각서 문안의 해석 상 이의를 제기함에 따라 추가적인 항공자유화는 이루어지지 못하고 있다. 한 중 FTA와는 별도의 항공회담을 통해 중국과의 점진적 선별적 항공여객시장 및 화물시장의 항공자유화를 추진해야 할 것이다. 둘째 항공운송산업 및 공항의 경쟁력을 확보해야 한다. 한국의 항공운송산업 경쟁력의 강화방안으로 국적항공사 경쟁력의 강화를 위한 지원체계를 마련하며, 국적항공사의 새로운 공정경쟁의 기반을 조성하며, 국익기반 전략적 네트워크를 구축해야 할 것이다. 한국의 공항 특히 인천공항의 경쟁력 강화방안으로 항공수요 창출 네트워크 경쟁력을 강화하며, 공항시설과 안전인프라를 확충하며, 공항을 통한 새로운 부가가치를 창출하며, 세계 1위 수준의 서비스 수준을 유지해야 할 것이다. 셋째 항공물류업의 경쟁력을 강화한다. 한국의 항공물류업 경쟁력의 강화방안으로 산업트렌드 변화에 대응한 고부가가치 물류산업의 육성전략으로 신규 물류시장을 개척하며, 물류인프라를 확충하며, 물류전문인력을 양성한다. 또한 글로벌 물류시장의 확대전략으로 물류기업의 해외투자 지원체계를 구축하며, 글로벌 운송네트워크 확장에 따른 국제협력 강화 및 인프라를 확보해야 할 것이다. 인천공항 항공물류 경쟁력의 강화방안으로 기업의 물류단지 입주수요에 대응하며, 신 성장 화물분야의 비교우위 선점을 하며, 물류허브 역량을 강화하며, 공항 내 화물처리속도 경쟁력을 향상해야 할 것이다. 넷째 한 중 FTA 후속 협상에서 항공운송서비스 분야의 추가 개방을 확보한다. 한 중 FTA 발효 후 2년 내에 개시될 후속 협상에서 중국 측 항공운송서비스 분야의 양허수준이 중국의 기체결 FTA에 비해 미흡한 분야인 컴퓨터 예약시스템서비스 및 항공기 보수 및 유지 서비스의 양허에 대해 추가 개방을 요구하는 것이 필요할 것이다. 결론적으로 한 중 FTA가 우리나라 항공여객시장, 항공화물시장 및 항공물류시장에 미치는 영향에 대응하여 추진해야 할 정책과제로서, 국적항공사의 경쟁력과 국민 편익을 고려하여 중국과의 점진적 선별적 항공자유화를 추진하며, 항공운송산업과 공항의 경쟁력 강화를 위한 지원체계를 구축하며, 물류기업들의 항공물류시장 진출을 확대하며, 중국 측 양허수준이 낮은 항공운송서비스 분야의 추가 개방 요구를 위한 준비를 해야 할 것이다.

  • PDF