• Title/Summary/Keyword: Complex contaminated soils

Search Result 27, Processing Time 0.021 seconds

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.

Recent Development of Removal and Treatment of Toxic Heavy Metals by Microorganisms (유독 중금속 오염물질 처리를 위한 미생물균주의 최근 이용 및 개발)

  • 방상원;최영길;한명수
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • There are several ways to remove and treat toxic heavy metals in the environment: chemical, physical and biological ways. The biological treatment utilizes the natural reactions of microorganisms living in the environments. These reactions include biosorption and bioaccumulation, oxidation and reduction, methylation and demethylation, metal - organic complexation and insoluble complex formation. The biological reactions provide a crucial key technology in the remediation of heavy metal-contaminated soils and waters. According to recent reports, various kinds of heavy metal species were removed by microorganisms and the new approaches and removal conditions to remediate the metals were also tried and reported elsewhere. This was mostly carried out by microorganisms such as fungi, bacteria and alga. In addition, a recent development of molecular biology shed light on the enhancing the microorganism's natural remediation capability as well as improving the current biological treatment.

  • PDF

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

A Study on the Binding Characteristics of $\beta$-Cyclodextrin with Benzene and Its Application on the Bioremediation ($\beta$-시클로덱스트린($\beta$-Cyclodextrin)의 결합 특성과 벤젠의 생물학적 분해에의 적용에 대한 연구)

  • 최종규;손현석;조경덕
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.65-70
    • /
    • 2002
  • Recently, surfactants were frequently used in order to desorb the hydrophobic organic compounds (HOCs) from soil and to enhance the bioavailability. Among them, -cyclodextrin ($\beta$-CD) is one of those. This study was performed to investigate the binding characteristics between benzene and $\beta$-CD and to examine the bioavailability of benzene. First, we investigated binding characteristics between benzene and $\beta$-CD in water and water/soil system. Then, we examined the effect of $\beta$-CD on the biodegradation of benzene in water and water/soil system. Experimental results on the binding characteristics showed that $\beta$-CD resulted in an efficient complex formation with benzene. As -CD concentration increased, the benzene concentration complexed with $\beta$-CD rapidly increased to 30-40% initial benzene added, and reached the equilibrium. We also investigated the effect of $\beta$-CD on the desorption of benzene from soil in the water/soil system. As $\beta$-CD concentration increased, benzene concentration desorbed into water increased up to 90%. How-ever, in its application to biodegradation of benzene in water and water/soil system, the biodegradation rate of benzene did not improved in the presence of $\beta$-CD compared with in the absense of $\beta$-CD. This result indicated that $\beta$-CD was more preferentially used as a carbon source than benzene. Therefore, for remediation of benzene contaminated soils, $\beta$-CD can be used as a surfactant to desert benzene from soil, and then ex-situ chemical treatment can be applied for the remediation.

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In Sung;Kang, Kyung Hong;Lee, Eun Ju
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.253-259
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<$17.5_\mu$g/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.$8_\mu$g/g/g) but cadmium was detected only in the stem (<7.$4_\mu$g/g/g) and root (<10.$4_\mu$g/g/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.$7_\mu$g/g/g) and N. peltata (<177.$5_\mu$g/g/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N. peltata$\leq$P. thunbergii

Distribution of Heavy metals in Soil at Iksan 2nd Industrial Complex Area (익산 제 2공단 토양의 중금속 함량 분포 조사)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Moon, Kwang-Hyun;Jang, Kwang-Ho;Kim, Su-Jin;Lee, Seung-Hyeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.250-258
    • /
    • 1999
  • The purpose of this study was to compare heavy metal concentrations in uncontaminated soil with those in soil influenced by industrial activities, and to investigate the relationship between change of heavy metal content and the kind of industry at the Iksan 2nd Industrial Complex that has started since 1995. Soils sampled in 0-3 cm and 3-6 cm soil depth, respectively were analized for content of Cd, Cu, Ni, Pb and Zn. The content of Cd in soil layer of 0 to 3 cm was 0.07-4.37ppm range, average concentration was 0.516ppm and 3-6 cm was 0.07-8.52ppm range, average concentration was 0.380ppm. Area of the chemicals, dyes and metal products manufacturing were higher than the other manufacturing area in Industrial Complex. The content of Cu in soil layer of 0 to 3 cm was 0.61-42.62ppm range, average concentration was 11.087ppm and 3-6 cm was 0.16-35.45ppm range, average concentration was 7.578ppm. Area of the metal products manufacturing were higher than the other manufacturing area in Industrial Complex. The content of Ni in soil layer of 0 to 3 cm was 0.19-15.93ppm range, average concentration was 5.525ppm and 3-6 cm was 0.39-15.59ppm range, average concentration was 5.310ppm. Area of the metal and chemical products manufacturing were higher than the other manufacturing area in Industrial Complex. The content of Pb in soil layer of 0 to 3 cm was 3.10-55.75ppm range, average concentration was 23.543ppm and 3-6 cm was 3.35-46.55ppm range, average concentration was 19.198ppm. Area of the chemicals and metal products manufacturing were higher than the other manufacturing area in Industrial Complex. The content of Zn in soil layer of 0 to 3 cm was 26.50-943.00ppm range, average concentration was 158.329ppm and 3-6 cm was 35.45-882.45ppm range, average concentration was 127.914ppm. Area of the chemicals and metal products manufacturing were higher than the other manufacturing area in Industrial Complex. As the result, this study was to compare Cd, Cu, Ni, Pb, Zn average concentration in uncontaminated soil of world with those in soil, that Cu, Ni were uncontaminated concentration level, Cd was somewhat higher compare with the concentration level of world, Pb and Zn were very higher. Soil contaminated degree of Iksan 2nd Industrial Complex was known a difference by type of industrial activities(chemical, dyes and metal of products)

  • PDF

Uptake and Translocation of Heavy Metals to Rice Plant on Paddy Soils in "Top-Rice" Cultivation Areas (탑라이스 생산지역 논 토양 중 잔류중금속의 벼 흡수이행)

  • Park, Sang-Won;Yang, Ju-Seok;Ryu, Seung-Won;Kim, Dae-Yeon;Shin, Joung-Du;Kim, Won-Il;Choi, Ju-Hyeon;Kim, Sun-Lim;Saint, Andrew Flynn
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • Heavy metal residues in soil, rice straw, unhulled rice, rice hull, polished rice, and rice barn on the rice paddy in the "Top rice production complex which is non-contaminated area were evaluated. It was observed that the average concentrations of As, Cd, Cu, Pb, and Hg in the paddy soils were 1.235, 0.094, 4.412, 4.728 and 0.0279 mg/kg, respectively. There were no cultivation areas exceeded of the threshold for soil contamination designated by "The Soil Environment Conservation Law" in Korea. For the polished rice, there were no samples exceeded of a permissible level of heavy metal residues such as 0.051 mg/kg of As, 0.040 mg/kg of Cd, 0.345 mg/kg of Cu, 0.065 mg/kg of Pb and 0.0015 mg/kg of Hg. For the uptake and translocation of heavy metals to rice plant, a main part of heavy metal accumulation was rice straw, and then rice bran. Furthermore, it shown that accumulation of heavy metals in unhulled rice, rice hulls, brown rice, and polished rice was approximately similar as low. The slopes of translocation of heavy metals from soil to polished rice were following order as Cd, 0.4321 > Cu, 0.054 ${\fallingdotseq}$ Hg, 0.052 > As, 0.021 > Pb, 0.008. It was observed that potential ability of Cd uptake in rice plant and then its translocation into polished rice was very high. Concentrations of copper and mercury absorbed in the rice plant were moderate for translocating into the polished rice, while the arsenic and lead in the plant were scarcely translocated into the polished rice. The distribution of heavy metals absorbed and translocated into aboveground parts of rice plant was appeared that there were remained at 63.3-93.4% in rice straw, 6.6-36.9% in unhulled rice, 0.6-5.7% in rice hulls, 3.2-31.3% in brown rice, 0.8-4.6% in rice bran and 1.1-26.7% in polished rice. The accumulation ratio of Cd in the aboveground parts of rice plant was remained at 26.7-31.3% in brown and polished rice.