• Title/Summary/Keyword: Complex Structure Model

Search Result 1,061, Processing Time 0.03 seconds

A study on the modeling and the design of multivariable fuzzy controller for the activated sludge process (활성오니 공정의 모델링 및 다변수 퍼지 제어기 설계에 관한 연구)

  • 남의석;오성권;황희수;최진혁;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.502-506
    • /
    • 1992
  • In this study, we proposed the fuzzy modeling method and designed a model-based logic controller for Activated and Sludge Process(A.S.P.) in sewage treatment. The identification of the structure of fuzzy implications is carreid out by use of fuzzy c-means clustering algorithm. And to identify the parameters of fuzzy implications, we used the complex and the least square method. To tune the premise parameters automatically the complex method is implemented. The model-based fuzzy controller is designed by rules generated from the identified A.S.P. fuzzy model. The feasibility of the proposed approach is evaluated through the identification of the fuzzy model to describe an input-output relation of the A.S.P.. The performance of identified model-based fuzzy controller is evaluated through the computer simulations.

  • PDF

Analysis of Odor Data Based on Mixed Neural Network of CNNs and LSTM Hybrid Model

  • Sang-Bum Kim;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.464-469
    • /
    • 2023
  • As modern society develops, the number of diseases caused by bad smells is increasing. As it can harm people's health, it is important to predict in advance the extent to which bad smells may occur, inform the public about this, and take preventive measures. In this paper, we propose a hybrid neural network structure of CNN and LSTM that can be used to detect or predict the occurrence of odors, which are most required in manufacturing or real life, using odor complex sensors. In addition, the proposed learning model uses a complex odor sensor to receive four types of data, including hydrogen sulfide, ammonia, benzene, and toluene, in real time, and applies this data to the inference model to detect and predict the odor state. The proposed model evaluated the prediction accuracy of the training model through performance indicators based on accuracy, and the evaluation results showed an average performance of more than 94%.

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

A Study on Determination of Complex Stiffness of Frame Bush for Ride-Vibration Improvement of Body-on-Frame Vehicle (프레임 차량의 주행진동 저감을 위한 프레임 부시 복소 동강성 결정에 관한 연구)

  • Jeong, Myeon-Gyu;Kim, Ki-Sun;Kim, Kwang-Joon;Hwang, In-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.194-199
    • /
    • 2005
  • Body-on-frame type vehicle has a set of frame bushes which are installed between body and frame fur vibration Isolation. Such frame bushes are important vibration transmission paths to passenger space. In order to reduce the vibration level of passenger space, therefore, the change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this end, simple finite element vehicle model was constructed and the complex stiffness of frame bushes was set to be design variable. Objective function was defined to reflect passenger ride comfort and genetic algorithm and sub-structure synthesis were applied for minimization of the objective function.

  • PDF

A Study on Determination of Complex Stiffness of Frame Bush for Ride-comfort Improvement of Body-on-frame Vehicle (프레임 차량의 주행 진동 저감을 위한 프레임 부시 복소동강성계수 크기 결정에 관한 연구)

  • Jeong, Myeon-Gyu;Kim, Ki-Sun;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.619-626
    • /
    • 2006
  • Body-on-frame type vehicle has a set of frame bushes between body and frame for vibration isolation. Such frame bushes are important vibration transmission paths to passenger space for excitations during driving. In order to reduce the vibration level of passenger space, therefore, change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this, a simple finite element vehicle model was constructed and complex stiffness of the frame bushes was set to be design variables. The objective function was defined to reflect frequency dependence of passenger ride comfort. Genetic algorithm and sub-structure synthesis were applied for minimization of the objective function. After optimization level at a position of interest on the car body was reduced by about 43.7 % in RMS value. Causes for optimization results are discussed.

Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction

  • Je, Sang Yun;Chang, Yoon-Suk;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1513-1523
    • /
    • 2017
  • Improvement of numerical analysis methods has been required to solve complicated phenomena that occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. In this study, the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power plant was investigated. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S) model as well as the traditional added-mass model. Subsequently, structural analyses were carried out using design response spectra combined with modal analysis data. Analysis results from the F-S model led to reductions of both frequency and Tresca stress compared to those values obtained using the added-mass model. Validation of the analysis method with the FSI model was also performed, from which the interface between the upper guide structure plate and the core shroud assembly lug was defined as the critical location of the typical RVIs, while all the relevant stress intensities satisfied the acceptance criteria.

Aeroelastic Analyses of Aircraft Wing by Using Equivalent Continuum BeamalRod Model (등가연속체 Beam-Rod 모델을 이용한 항공기 날개의 공력탄성 해석)

  • Lee, U-Sik;Lee, Hang
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.615-622
    • /
    • 1995
  • It may be inefficient to conduct the aeroelastic analysis by using full-scale conventional finite-element analyses or experiments, from the initial design phase, for an aircraft wing which can be considered as the discontinuum complex structure with composite laminated skins. In this paper, therefore more efficient aeroelastic analysis has been conducted for a box-beam typed aircraft wing by using the equivalent continuum beam-rod model which is derived from the concept of energy equivalence. Equivalent structural properties of the continuum beam-rod model are obtained from the direct comparison of the finite-element matrices of continuum beam-rod model with those of box-beam typed aircraft wing. Numerical results by the continuum beam-rod model approach are compared with those by the conventional finite-element analysis approach to show that the continuum beam-rod model proposed herein is quite satisfactory as a simplified model of aircraft wing structure for aeroelastic analyses.

Atmospheric Studies Using a Three-Dimensional Eulerian Model in Kyongin Region (3차원 오일러리안 확산모델을 이용한 경인산단권역의 대기거동 해석)

  • Song, Dong-Woong
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • The numerical modeling and comparison with observations are performed to find out the detailed structure of meteorology and the characteristic of related dispersion phenomena of the non-reactive air pollutant at Kyoungin region, South Korea, where several industrial complex including Siwha, Banwol and Namdong is located. MM5 (Fifth Generation NCAR/Penn State Mesoscale Model), 3-D Land/sea breeze model and 3-D diagnostic meteorological model have been utilized for the meteorological simulation for September, 2002 with each different spatial resolution, while 3-D Eulerian air dispersion model for the air quality study. We can see the simulated wind field shows the very local circulation quitely well compared with in-site observations in shoreline area with complex terrains, at which the circulation of Land/sea breeze has developed and merged with the mountain and valley breeze eventually. Also it is shown in the result of the dispersion model that the diurnal variation and absolute value of daily mean $SO_2$ concentrations have good agreement with observations, even though the instant concentration of $SO_2$ simulated overestimates around 1.5 times rather than that of observation due to neglecting the deposition process and roughly estimated emission rate. This results may indicate that it is important for the air quality study at shoreline region with the complex terrain to implement the high resolution meteorological model which is able to handle with the complicate local circulation.

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

A study on computer-aided synthesis of process control system structure (전산기를 이용한 공정 제어구조 합성에 관한 연구)

  • Lo, Kyun;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.670-673
    • /
    • 1987
  • The structure of chemical process has become increasingly complex, due to better management of energy and raw materials. As a consequence, the design of control systems for complete plants now constitutes the focal point of engineering interest, rather than controller designs for single processing units. Instead of traditional methods based on complex mathematical model, chemical processes are represented by structural array and cause-and-effect graph to apply non-numerical problem-solving techniques. A systematic logical procedure to synthesize alternatives of control system structure and some heuristic rules to select a feasible solution from the vast number of alternatives that are possible are considered in this study.

  • PDF