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Abstract 

As modern society develops, the number of diseases caused by bad smells is increasing. As it can harm 

people's health, it is important to predict in advance the extent to which bad smells may occur, inform the 

public about this, and take preventive measures. In this paper, we propose a hybrid neural network structure 

of CNN and LSTM that can be used to detect or predict the occurrence of odors, which are most required in 

manufacturing or real life, using odor complex sensors. In addition, the proposed learning model uses a 

complex odor sensor to receive four types of data, including hydrogen sulfide, ammonia, benzene, and toluene, 

in real time, and applies this data to the inference model to detect and predict the odor state. The proposed 

model evaluated the prediction accuracy of the training model through performance indicators based on 

accuracy, and the evaluation results showed an average performance of more than 94%. 
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1. INTRODUCTION  

In the manufacturing industry, there is a high demand for artificial intelligence services that can detect and 

predict anomalies in real time [1]. In particular, in manufacturing sites that deal with chemical components or 

industrial sites that perform waste treatment and storage, on-site monitoring systems based on video 

information are being applied in real-time based on video information for odor management [2-3]. However, 

traditional monitoring systems do not predict the detection of anomalies, but rather detect them after they have 

already occurred. Mostly, this is because the existing system is not equipped with artificial intelligence-based 

prediction service technology. In addition, the development of artificial intelligence learning models is actively 

underway to provide predictive services such as odor detection [4]. In Korea, various studies are being 

conducted on odor generation through analysis of the cause of odor and machine learning [5-7]. In order to 

prevent the damage caused by diseases caused by odors and to improve public health, it is important to predict 

the levels at which odors may occur in advance and to inform people so that preventive measures can be taken. 

In this paper, we propose a mixed neural network structure of CNN and LSTM to predict multiple time 

series data by fusing a linear (1D) convolutional neural network (CNN) [8] with a Long Short-term memory 

(LSTM) model for use in time series data analysis.  
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In order to experiment with the proposed architecture, the data collection was carried out in a time series 

format in which an artificially odor occurs in an environment where an odor complex sensor is installed, and 

the data is collected from 120,000 Collected. The obtained datasets were used to assess the accuracy of the 

proposed neural networks and performance comparison models and to compare the results. 
 

2. Design of CNN-LSTM hybrid model 

In this paper, the proposed method to improve the prediction accuracy of the time series data obtained from 

the odor sensor is to design a CNN model with a structure that can consider multiple environmental data and 

a neural network model with a mixed structure in the form of adding an LSTM layer. The proposed CNN-

LSTM hybrid model consists of an input layer, a CNN layer, an LSTM layer, and an output layer. Figure 1 is 

a structural diagram designed for a mixed neural network model of CNN and LSTM in which four types of 

time-series data such as hydrogen sulfide, ammonia, benzene, and toluene are inputted. 

 

 

Figure 1. Structure of CNN-LSTM hybrid neural network  

 

2.2. Data Set 

For data collection, 120,000 data were collected and used by simulating a situation in which odors are 

artificially generated, such as in an environment where odor sensors are installed, in a time series format.  

Odor-producing items include hydrogen sulfide (normal range (0.4 ± 0.3) ppm, abnormal range (40 ± 20) 

ppm), ammonia (normal range (9 ± 4) ppm, abnormal range (300 ± 100) ppm), benzene (normal range (0.05 ± 

0.03) ppm, abnormal range (50 ± 20) ppm, toluene (normal range (12.36 ± 3) ppm, abnormal range (500 ± 200) 

ppm. Data items were selected and collected. The collected data consisted of 120 sets in 1 set, 600 normal data 

in 1 set, and 400 abnormal data in 1 set, for a total of 1,000 data sets. Table 1 and Figure 2, measures the loss 

rate according to the epoch, and the interval in which the loss rate was smaller, measured at 30 epochs, and 

then showed little change in size. 
 

Table 1.  Measure of loss rate according to epoch 

Epoch Loss val_loss Epoch Loss val_loss 
Epoch 1 0.0599 0.0418 Epoch 8 0.0135 0.0021 

Epoch 2 0.0442 0.0381 Epoch 9 0.0121 0.0023 

Epoch 3 0.0421 0.0373 Epoch 10 0.0114 0.0023 

Epoch 4 0.0393 0.0380 Epoch 11 0.0105 0.0011 
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Epoch 5 0.0330 0.0328 …                     … 

Epoch 6 0.0234 0.0119 Epoch 30 0.0078 5.0697e-04 

Epoch 7 0.0160 0.0092 Epoch 31 0.0079 0.0016 

 

 

Figure 2. Measure of loss rate according to epoch related graphs 
 

 

3. Implement 

In this paper, the proposed method to improve the prediction accuracy of the time series data obtained from 

the odor sensor is to design a CNN model with a structure that can consider multiple environmental data and 

a neural network model. 

 

Figure 3. Structure of 1D CNN Model 
 

 Figure 3 shows the connection and structure of each layer to the CNN model. In the convolutional layer, 

1D convolutional operations and pooling are performed, followed by a flatten layer, and then a fully connected 

layer. Dropout layers were used to prevent overfitting. Finally, in the output layer, a sigmoid activation 

function is applied to five neurons to perform multiclass classification. The code for each parameter used in 

the CNN model is as follows: compile (optimizer='adam', loss='binary_crossentropy', 

metrics=['mean_squared_error']). Here, Adam uses an optimizer to optimize the model, 

loss='binary_crossentropy' uses binary cross-entropy as a loss function for the binary classification problem, 

and 'mean_squared_error' uses mean square error as an indicator to evaluate the model's performance. 
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Figure 4 shows the structure of the sequential model, including the LSTM layer. The LSTM layer has 64 

units, followed by a dropout layer, a dense layer, and an output layer with a sigmoid-enabled function. 

 

 

Figure 4. Structure of LSTM Model 
 

Figure 5 shows the structure of the model, which includes a convolutional layer, a pooling layer, an LSTM 

layer, a dropout layer, and a dense layer. The Conv1D layer and MaxPooling1D layer perform 1D convolution 

and pooling, while the LSTM layer processes sequential data. Dropout layers were used to prevent overfitting. 

In the final output layer, a sigmoid-activation function is applied to five neurons to perform a multiclass 

classification. 

 

 

Figure 5. Structure of CNN-LSTM Hybrid Model 

 

4. Result 

Table 2.  Performance Analysis by Model 

Division Epochs Accuracy RMSE mAP 

CNN Model 30 0.94 0.07 0.99 

LSTM Model 30 0.96 0.52 0.99 

CNN-LSTM hybrid Model 30 0.99 0.09 0.99 

 

The contents of Table 2 are analyzed as follows. As a result of the CNN model, the CNN model trained for 
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30 epochs showed a high overall accuracy of 94%, with a low RMSE value of 0.07, which means that the 

model's prediction is close to the actual value. The high mAP value was 99%, indicating that the object 

detection model performed well. The LSTM model trained for 30 epochs showed a high accuracy of 96%, but 

compared to the other two models, the relatively high 0 RMSE value was 0.52, confirming that the prediction 

differed slightly from the actual value. It was confirmed that 99% of object detection performance is excellent 

with a high mAP value. In addition, the CNN-LSTM hybrid model that combines CNN and LSTM presented 

in this paper showed a high accuracy of 99% and high object detection performance, a low RMSE value of 

0.09 showed that the model's prediction was close to the actual value, and a high mAP value 99% showed that 

the object detection model performed well.  

 

 

Figure 6. Comparison of the three models 

 
Based on the model performance shown in Figure 6, the CNN, LSTM, and CNN-LSTM models perform 

well according to their respective characteristics. 

 

5. Conclusion 

In this paper, we proposed a mixed neural network structure that combines CNNs and LSTMs to improve 

the accuracy of time series predictions of various environmental data collected from compound sensors. As a 

result of the experiments, the proposed CNN-LSTM hybrid model showed high accuracy, low RMSE values, 

and excellent object detection performance. In particular, the CNN model was 94% accurate, the LSTM model 

was 96% accurate, and the CNN-LSTM hybrid model was 99% accurate. This model presents an important 

advance in exploring the applicability of odor detection and prediction in real-world industrial settings. By 

anticipating ahead of time and taking appropriate precautions, we can contribute to the prevention of diseases 

caused by odors and the improvement of public health. Furthermore, based on the results of the experiment, it 

can be confirmed that the CNN, LSTM, and CNN-LSTM hybrid models perform effectively according to their 

respective characteristics. 
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Therefore, this paper demonstrates the effectiveness of CNN-LSTM hybrid model structure as a predictive 

model for compound sensor data. 
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