• Title/Summary/Keyword: Complex Mode Analysis

Search Result 361, Processing Time 0.026 seconds

Modeling and coupling characteristics for an airframe-propulsion-integrated hypersonic vehicle

  • Lv, Chengkun;Chang, Juntao;Dong, Yilei;Ma, Jicheng;Xu, Cheng
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.553-570
    • /
    • 2020
  • To address the problems caused by the strong coupling of an airbreathing hypersonic vehicle's airframe and propulsion to the integrated control system design, an integrated airframe-propulsion model is established, and the coupling characteristics between the aircraft and engine are analyzed. First, the airframe-propulsion integration model is established based on the typical nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle and the one-dimensional dual-mode scramjet model. Thrust, moment, angle of attack, altitude, and velocity are used as transfer variables between the aircraft model and the engine model. The one-dimensional scramjet model can accurately reflect the working state of the engine and provide data to support the coupling analysis. Second, owing to the static instability of the aircraft model, the linear quadratic regulator (LQR) controller of the aircraft is designed to ensure attitude stability and height tracking. Finally, the coupling relationship between the aircraft and the engine is revealed through simulation examples. The interaction between vehicle attitude and engine working condition is analyzed, and the influence of vehicle attitude on engine safety is considered. When the engine is in a critical working state, the attitude change of the aircraft will not affect the engine safety without considering coupling, whereas when coupling is considered, the attitude change of the aircraft may cause the engine unstart, which demonstrates the significance of considering coupling characteristics.

Boost Converter Embedded Battery Charging Function for Application of E-bike (전기자전거 응용을 위한 배터리 충전 기능 내장형 부스트 컨버터)

  • Kim, Da-Som;Kim, Sang-Yeon;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2016
  • In the conventional E-bike, a 42 V/10 A Li-ion battery drives a 24 V/10 A BLDC motor via a 6-switch PWM DC/AC inverter. The major problems of the conventional battery-fed motor drive systems are listed as follows. To charge the battery, an external battery charger (adapter) is required, which degrades the portability of E-bike users. In addition, given the high-frequency operation of the motor drive inverter, the switching losses are significant, which degrades the whole power efficiency. High-voltage batteries (42 V) require a complex battery management system (BMS), which degrades the reliability of the battery pack. In this paper, an embedded boost-converter battery charger for E-bikes is proposed. The variable output boost converter, which converts 16.8 V battery voltage to the required variable voltage of the inverter input, can use a low-voltage battery and thus improve the reliability of batteries. By varying the inverter input voltage via boost converter, a DC link voltage control method can be applied to reduce the switching frequency of the inverter, which improves the whole power efficiency. Given that the function of a flyback charger is integrated in the proposed boost converter, the portability of the E-bike user can be maximized by excluding an external adapter. The validity of the proposed circuit will be confirmed by operation mode analysis and simulation. Moreover, experimental results of integrative charger using Li-ion battery and 200 W motor test will be showed with a prototype sample as well.

MOving Spread Target signal simulation (능동 표적신호 합성)

  • Seong, Nak-Jin;Kim, Jea-Soo;Lee, Snag-Young;Kim, Kang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.30-37
    • /
    • 1994
  • Since the morden targets are of high speed and getting quiet in both active and passive mode, the necessities of developing advanced SONAR system capable of performing target motion analysis (TMA) and target classification are evident. In order to develop such a system, the scattering mechanism of complex bodies needs to be, some extent, fully understood and modeled. In this paper, MOving Spread Target(MOST) signal simulation model is presented and discussed. The model is based on the highlight distribution method, and simulates pulse elongation of spread target, doppler effect due to kinematics of the target as well as SONAR platform, and distribution target strength of each highlight point (HL) with directivity. The model can be used in developing and evaluating advanced SONAR system through system simulation, and can also be used in the development of target state estimation algorithm.

  • PDF

A FPGA Implementation of BIST Design for the Batch Testing (일괄검사를 위한 BIST 설계의 FPGA 구현)

  • Rhee, Kang-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1900-1906
    • /
    • 1997
  • In this paper, the efficient BILBO(named EBILBO) is designed for BIST that is able to batch the testing when circuit is designed on FPGA. The proposed algorithm of batch testing is able to test the normal operation speed with one-pin-count that can control all part of large and complex circuit. PRTPG is used for the test pattern and MISR is used for PSA. The proposed algorithm of batch testing is VHDL coding on behavioral description, so it is easily modified the model of test pattern generation, signature analysis and compression. The EBILBO's area and the performance of designed BIST are evaluated with ISCAS89 benchmark circuit on FPGA. In circuit with above 600 cells, it is shown that area is reduced below 30%, test pattern is flexibly generated about 500K and the fault coverage is from 88.3% to 100%. EBILBO for the proposed batch testing BIST is able to execute concurrently normal and test mode operation in real time to the number of $s+n+(2^s/2^p-1)$ clock(where, in CUT, # of PI;n, # of register, p is order # of polynomial). The proposed algorithm coded with VHDL is made of library, then it well be widely applied to DFT that satisfy the design and test field on sme time.

  • PDF

A Matrix-Based Graph Matching Algorithm with Application to a Musical Symbol Recognition (행렬기반의 정합 알고리듬에 의한 음악 기호의 인식)

  • Heo, Gyeong-Yong;Jang, Kyung-Sik;Jang, Moon-Ik;Kim, Jai-Hie
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.2061-2074
    • /
    • 1998
  • In pattern recognition and image analysis upplications, a graph is a useful tool for complex obect representation and recognition. However it takes much time to pair proper nodes between the prototype graph and an input data graph. Futhermore it is difficult to decide whether the two graphs in a class are the same hecause real images are degradd in general by noise and other distortions. In this paper we propose a matching algorithm using a matrix. The matrix is suiable for simple and easily understood representation and enables the ordering and matching process to be convenient due to its predefined matrix manipulation. The nodes which constitute a gaph are ordered in the matrix by their geometrical positions and this makes it possible to save much comparison time for finding proper node pairs. for the classification, we defined a distance measure thatreflects the symbo's structural aspect that is the sum of the mode distance and the relation distance; the fornet is from the parameters describing the node shapes, the latter from the relations with othes node in the matrix. We also introduced a subdivision operation to compensate node merging which is mainly due t the prepreocessing error. The proposed method is applied to the recognition of musteal symbols and the result is given. The result shows that almost all, except heavily degraded symbols are recognized, and the recognition rate is approximately 95 percent.

  • PDF

Design formulas for vibration control of sagged cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie F. Jr.;Ko, Jan-Ming;Dong, Shenghao
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.537-551
    • /
    • 2019
  • In this paper, a method for analyzing the damping performance of stay cables incorporating magnetorheological (MR) dampers in the passive control mode is developed taking into account the cable sag and inclination, the damper coefficient, stiffness and mass, and the stiffness of damper support. Both numerical and asymptotic solutions are obtained from complex modal analysis. With the asymptotic solution, analytical formulas that evaluate the equivalent damping ratio of the sagged cable-damper system in consideration of all the above parameters are derived. The main thrust of the present study is to develop an general design formula and a universal curve for the optimal design of MR dampers for adjustable passive control of sagged cables. Two sag-affecting coefficients are derived to reflect the effects of cable sag on the maximum attainable damping ratio and the optimal damper coefficient. For the cable configurations commonly used in cable-stayed bridges, the sag-affecting coefficients are directly expressed in terms of the sag-extensibility parameter to facilitate the control design. A case study on adjustable passive vibration control of the longest cable (536 m) on Stonecutters Bridge is carried out to demonstrate the influence of the sag for the damper design, and to figure out the necessity of adjustability of damper coefficients for achieving maximum damping ratio for different vibration modes.

Axially-loaded multiplanar tubular KTX-joints: numerical analysis

  • Zhang, Chenhui;Zou, Bo;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.173-190
    • /
    • 2022
  • With the development of spatial structures, the joints are becoming more and more complex to connect tubular members of spatial structures. In this study, an approach is proposed to establish high-efficiency finite element model of multiplanar KTX-joint with the weld geometries accurately simulated. Ultimate bearing capacity the KTX-joint is determined by the criterion of deformation limit and failure mechanism of chord wall buckling is studied. Size effect of fillet weld on the joint ultimate bearing capacity is preliminarily investigated. Based on the validated finite element model, a parametric study is performed to investigate the effects of geometric and loading parameters of KT-plane brace members on ultimate bearing capacity of the KTX-joint. The effect mechanism is revealed and several design suggestions are proposed. Several simple reinforcement methods are adopted to constrain the chord wall buckling. It is concluded that the finite element model established by proposed approach is capable of simulating static behaviors of multiplanar KTX-joint; chord wall buckling with large indentation is the typical failure mode of multiplanar KTX-joint, which also increases chord wall displacements in the axis directions of brace members in orthogonal plane; ultimate bearing capacity of the KTX-joint increases approximately linearly with the increase of fillet weld size within the allowed range; the effect mechanism of geometric and loading parameters are revealed by the assumption of restraint region and interaction between adjacent KT-plane brace members; relatively large diameter ratio, small overlapping ratio and small included angle are suggested for the KTX-joint to achieve larger ultimate bearing capacity; the adopted simple reinforcement methods can effectively constrain the chord wall buckling with the design of KTX-joint converted into design of uniplanar KT-joint.

Development and Performance Improvement of old Aluminum Extruder Remanufacturing Technology (노후된 알루미늄 압출기의 재제조 기술 개발 및 성능 개선)

  • Sang-Min Yoon;Hang-Chul Jung;Man-Seek Kong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2023
  • The domestic remanufacturing industry is concentrated in auto parts, so it is necessary to expand into various industries. In the domestic aluminum industry, the extrusion process accounts for more than 40% of the total, but the old and management of the extrusion equipment is not done properly. In particular, the extruder has a structure in which equipment is not replaced until major parts are damaged or worn, so there are problems such as lower process precision, productivity and production efficiency compared to new equipment, and high maintenance costs. In this study, the old extruder was remanufactured for major high-risk parts through Failure Mode and Effect Analysis(FMEA), and the process level and performance of the extruder were evaluated before and after remanufacturing. Compared to the existing extruder, the standard deviation of the remanufacture extruder was reduced by 93.5%, 57.9%, and 70.0%, respectively, in major process control items such as container temperature, billet temperature, and ram speed, keeping performance constant. In addition, it was possible to produce products with complex shapes that could not be produced before due to problems such as dimensional deviation within tolerances. In this study, remanufacturing guidelines were presented by analyzing the effect of failure modes of the old extruder, and the performance improvement of the extruder was confirmed.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

Three Cyanide-Bridged One-Dimensional Single Chain CoIII-MnII Complexes: Rational Design, Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Zhao, Zengdian;Wang, Ping;Chen, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1581-1585
    • /
    • 2012
  • Two pyridinecarboxamide dicyanidecobalt(III) building blocks and two mononuclear seven-coordinated macrocycle manganese(II) compounds have been rationally selected to assemble cyanide-bridged heterobimetallic complexes, resulting in three cyanide-bridged $Co^{III}-Mn^{II}$ complexes. Single X-ray diffraction analysis show that these complexes $\{[Mn(L^1)][Co(bpb)]\}ClO_4{\cdot}CH_3OH{\cdot}0.5H_2O$ ($\mathbf{1}$), $\{[Mn(L^2)][Co(bpb)]\}ClO_4{\cdot}0.5CH_3OH$ ($\mathbf{2}$) and ${[Mn(L^1)][Co(bpb)]\}ClO_4{\cdot}H_2O$ ($\mathbf{3}$) ($L^1$ = 3,6-diazaoctane-1,8-diamine, $L^2$ = 3,6-dioxaoctano-1,8-diamine; $bpb2^{2-}$ = 1,2-bis(pyridine-2-carboxamido)benzenate, $bpmb2^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate) all present predictable one-dimensional single chain structures. The molecular structures of these one-dimensional complexes consists of alternating units of $[Mn(L)]^{2+}$ ($L=L^1$ or $L^2$) and $[Co(L^{\prime})(CN)2]^-$ ($L^{\prime}=bpb2^{2-}$, or $bpmb2^{2-}$), forming a cyanide-bridged cationic polymeric chain with free $ClO_4{^-}$ as the balance anion. The coordination geometry of manganese(II) ion in the three one-dimensional complexes is a slightly distorted pentagonal-bipyrimidal with two cyanide nitrogen atoms at the trans positions and $N_5$ or $N_3O_2$ coordinating mode at the equatorial plane from ligand $L^1$ or $L^2$. Investigation over magnetic properties of these complexes reveals that the very weak magnetic coupling between neighboring Mn(II) ions connected by the diamagnetic dicyanidecobalt(III) building block. A best-fit to the magnetic susceptibility of complex ${\mathbf}{1}$ leads to the magnetic coupling constants $J=-0.084(3)cm^{-1}$.