• Title/Summary/Keyword: Complex Formation

Search Result 1,729, Processing Time 0.033 seconds

Charge Transfer Complex Formation of Amines with Organic Halides (I) (아민과 有機할로겐 化合物間의 Charge Transfer Complex 形成에 關한 硏究 (I))

  • Kim, Yoo-Sun;Oh, Jung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.121-125
    • /
    • 1967
  • The formation of a charge transfer complex between various amines and organic halogen compounds was closely investigated. A mixture of amine (piperidine, pyridine, diethylamine, ethylamine, triethylamine and triethanolamine) and organic halides(carbon tetrachloride and chloroform) was checked for its UV absorption spectrum in presence of n-hexane solvent. A red shift was observed. The formation of charge transfer complex was observed in the case of triethylamine and diethylamine, whereas the formation of contact complex was distinct in case of piperidine. The relation between the nucleophilicity of amines and their tendency of forming charge transfer complex was discussed.

  • PDF

Comparison of Inclusion Complex Formation Capacity of Cyclodextrins with Various Molecules and Characterization of Cyclodextrin-fatty Acid Complex (Cyclodextrin의 Inclusion Complex 형성능과 Fatty Acid와의 Complex 형성조건과 특성)

  • 이용현;정승환박동찬
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.149-158
    • /
    • 1995
  • The capacity of inclusion complex formation between ${\alpha}$-, ${\beta}$-, ${\gamma}$-cyclodextrins(CDs) and various compounds, such as pH indicators, biloslalns, glycoside, amino acid, and fatty acids, was compared. Fatty acid was identified as the most suitable ligand for fractionation of CDs in terms of capacity and selectivity. The effects of complex formation conditions, such as, mixing ratio of CD and fatty acid, pH, ionic strength, and temperature, on the capacity of fatty acrid-CD complex was also investigated. The carbon number of fatty acids was identified as the most significant factor determining the capacity and selectivity of inclusion complex formation of CDs. Capric acid(C10) and palmitic acid(C16) showed high specificity for ${\alpha}$- and ${\beta}$-CDs, respectively. Under the optimal conditions, the molar ratio of complex formed was found to be 1.0:2.6 for ${\alpha}$-CD/capric acid and 1.0:1.9 for ${\beta}$-CD/palmitic acid. X-ray diffraction and infrared spectrum of the formed inclusion complex were analyzed. The changes of enthalpy($\Delta$H) of the inclusion complex formation reaction was evaluated by differential scanning calorimetry, showed that the reaction was endothermic.

  • PDF

Studies on Complex Formation in Aqueous Solution by Caffeine and Nicotinamide Interaction of Caffeine and Nicotinamide with Lidocaine and Saccharin (수용액중 Caffeine 또는 Nicotinamide 에 의한 Complex 형성에 대한 연구 Lidocaine 또는 Saccharin에 대한 Caffeine 또는 Nicotinamide의 상호작용)

  • 채동규
    • YAKHAK HOEJI
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1963
  • This investigation is the studies on the solubility analysis for several pharmaceuticals. The equilibrium reactions leading to complex formation of Caffeine and Nicotinamide with Lidocaine and Saccharin have been studied. The equilibrium constant of each complexes have also been calculated. It is shown that complex formation may lead to an increase in the solubilities of the reactants, and that Nicotinamide has more complexing activity than Caffeine. The influence of chemical structure of each components on interaction is also discussed.

  • PDF

Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis

  • Yun, Hyeseon;Kim, Keunpil
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.607-612
    • /
    • 2019
  • During meiosis, programmed double-strand breaks (DSBs) are repaired via recombination pathways that are required for faithful chromosomal segregation and genetic diversity. In meiotic progression, the non-homologous end joining (NHEJ) pathway is suppressed and instead meiotic recombination initiated by nucleolytic resection of DSB ends is the major pathway employed. This requires diverse recombinase proteins and regulatory factors involved in the formation of crossovers (COs) and non-crossovers (NCOs). In mitosis, spontaneous DSBs occurring at the G1 phase are predominantly repaired via NHEJ, mediating the joining of DNA ends. The Ku complex binds to these DSB ends, inhibiting additional DSB resection and mediating end joining with Dnl4, Lif1, and Nej1, which join the Ku complex and DSB ends. Here, we report the role of the Ku complex in DSB repair using a physical analysis of recombination in Saccharomyces cerevisiae during meiosis. We found that the Ku complex is not essential for meiotic progression, DSB formation, joint molecule formation, or CO/NCO formation during normal meiosis. Surprisingly, in the absence of the Ku complex and functional Mre11-Rad50-Xrs2 (MRX) complex, a large portion of meiotic DSBs was repaired via the recombination pathway to form COs and NCOs. Our data suggested that Ku complex prevents meiotic recombination in the elimination of MRX activity.

Prepartion and Microstructure Changes with Swelling of Polyion Complex membranes Based on the K-Carrageenan

  • Jegal, Jonggeon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.61-62
    • /
    • 1994
  • In order to prepare polyion complex membranes useful for the separation of water-alcohol by pervaporation, k-carrageenan containing artionic sulfate groups in the backbone and good hydrophilicity was selected for the polyanion membrane material and poly{1,3-bis[4-butyl pyridinium] propane. bromide}, one of the polycations synthesized in our lab and containing cationic pyridinium groups., was used. The polyion complex membranes were prepared by the ion complex formation between kcarrageenan films and poly{1,3-bis[4-butyl pyridinium] propane. bromide}. On the formation process of polyion complex membranes, the way of potyion complex formation was carefully studied. In order to study the effect of the morphology on the permeation properties of the polyion complex membranes, which is one of the important factors affecting on the permeation properties of membranes but rarely studied, the microstructure behaviors of the polyion complex mem6ranes in methanol-water mixtures with different compositions Were also studied with x-ray diffractometry and polarizing microscopy.

  • PDF

Complex Formation between 3CaO.$Al_2O_3$ and Sodium Gluconate (3CaO.$Al_2O_3$와 글루콘산 나트륨간의 착체형성)

  • 김창은;이승헌;이승규
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.883-890
    • /
    • 1990
  • Although various theories have been presented on the mechanism of setting retardation of 3CaO·Al2O3, this phenomenon has not yet been defined. The present investigation was initiated in order to solve the mechanism from the view point of coordination chemistry. The solubility of Ca(OH)2 in aquous solution of soldium gluconate was abnormally high, and was proportional to the concentration of sodium gluconate. These phenomena were attributed to the soluble complex formation, that is, (1 : 1)Ca complex formation between calcium ion and gluconate ion. The author's proposal was further confirmed by the results of electrical conductivity measurement. The formation of calcium complex was also supported by IR spectra and DTA. When sodium gluconate was dissolved in 3CaO·Al2O3 suspension, calcium complex and aluminum complex were formed. As an experimental evidence, the asymmetric stretching vibration of carboxyl group in sodium gluconate was observed to be shifted to lower frequency from 1625cm-1 to 1585cm-1 characteristically. The characteristic exothermic peaks of the complexs at 430℃ and 700℃ observed in DTA curve also suggest the formation of the complexs between sodium gluconate and 3CaO·Al2O3.

  • PDF

Prion Protein Does Not Interfere with SNARE Complex Formation and Membrane Fusion

  • Yang, Yoo-Soo;Shin, Jae-Il;Shin, Jae-Yoon;Oh, Jung-Mi;Lee, Sang-Ho;Yang, Joo-Sung;Kweon, Dae-Hyuk
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.782-787
    • /
    • 2009
  • In prion disease, spongiform neurodegeneration is preceded by earlier synaptic dysfunction. There is evidence that soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) complex formation is reduced in scrapie-infected in vivo models, which might explain this synaptic dysfunction because SNARE complex plays a crucial role in neuroexocytosis. In the present study, however, it is shown that prion protein (PrP) does not interfere with SNARE complex formation of 3 SNARE proteins: syntaxin 1a, SNAP-25, and synaptobrevin. Sodium dodecyl sulfate-resistant complex formation, SNAREdriven membrane fusion, and neuroexocytosis of PC12 cells were not altered by PrP. Thus, PrP does not alter synaptic function by directly interfering with SNARE complex formation.

Formation of Complex XeHCl+ in the Xe++ HCl Collision

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.795-798
    • /
    • 2008
  • The formation of complex $XeHCl^+$ in the collision-induced reaction of $Xe^+$ with HCl has been studied by use of classical dynamics procedures using the London-Eyring-Polanyi-Sato empirical potential energy surfaces. A small fraction of trajectories on the $Xe^+$ + HCl and Xe + $HCl^+$ surfaces lead to the formation of complex $XeHCl^+$ with life-times of 1-2 ps which is long enough to survive many rotations before redissociating back to the reactant state. The formation of complex $XeHCl^+$ occurs mainly from collision angle of $\Theta$ = ${45^{\circ}}$.

Charge Transfer Complexing Between Indole Derivatives and Methylviologen and Effects of Sodium Dodecyl Sulfate on It

  • Joon Woo Park;Sung-Jin Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.121-126
    • /
    • 1984
  • The charge transfer complex formations between indole derivatives and methylviologen were investigated spectroscopically. In aqueous solutions near room temperature, the order of complex stability was tryptamine < tryptophan < indole < indole acetate, which is the reverse order of the magnitude of molar absorptivities. This was interpreted as involvement of contact charge transfer. The decrease of enthalpy of complex formation (-${\Delta}$H) was highest in tryptamine, and lowest in indole acetate. ${\Delta}$H and entropy of complex formation (${Delta}$S) varied nearly in a linear fashion with isokinetic temperature $242^{\circ}$K. These results were attributed to the hydration-dehydration properties of the side chains in indole derivatives. Except indole acetate, the complex formations were greatly enhanced by the addition of sodium dodecyl sulfate(SDS). However, the direct relationship between the enhanced complex formation and SDS micelle formation was not found. The enhanced charge transfer interaction inSDS solutions was attributed to the increased ${\Delta}$S by interaction between methylviologen and SDS in premicellar level. The order of complex stability in SDS solutions was indole acetate < tryptophan < trypamine < indole, which reflects the hydrophobicity of indole derivatives as well as electrostatic interaction between indole derivatives and methylviologen associated with SDS.

EXCITED-STATE TWISTED INTRAMOLECLILAR CHARGE TRANSFER OF p-N,N-DIMETHYLAMINOBENZOIC ACID IN AQUEOUS CYCLODEXTRIN SOLUTIONS: TIME-RESOLVED FLUORESCENCE STUDY

  • Kim, Yong-Hee;Cho, Dae-Won;Yoon, Min-Joong
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.153-158
    • /
    • 1996
  • The effects of $\alpha$- and $\beta$-cyclodextrins (CD) on the twisted intramolecular charge transfer (TICT) behavior of p-N,N'-dimethylaminobenzoic acid (DMABA) in buffered aqueous solution have been investigated by examining formation and decay behaviors of the TICT-typical dual fluorescence. The ratio of the TICT emission to the normal emission (I$_a$/I$_b$) increases linearly $\alpha$-CD concentration increases, while in the presence of $\beta$-CD it shows nonlinear dependences on the CD concentration. The analysis of the CD-dependent changes of the I$_a$/I$_b$ and absorption spectra demonstrates formation of 1:1 inclusion complexes between DMABA and CDs. The decay time of the normal emission (ca. 700 ps) is little affected by the formation of $\alpha$-CD inclusion complex, whereas it increases upto ca. 1.6 ns upon formation of $\beta$-CD inclusion complex. The TICT emission for the $\beta$-CD inclusion complex exhibits two decay components while it shows a single component for the $\alpha$-CD inclusion complex, indicating formation of one or two types of inclusion complex in the presence of $\alpha$-CD or $\beta$-CD, respectively. These results are attributed to the CD cavity size dependence on patterns of complexation between CDs and DMABA. The CD size dependences of the TICT fluorescence properties with the orientation of the guest molecule demonstrate that the specific hydrogen bonding between the carboxylic acid group and water plays an important role in the excited-state TICT.

  • PDF