• Title/Summary/Keyword: Complex Flows

Search Result 393, Processing Time 0.033 seconds

Explicit Analysis of Flows in Box Culvert (사각형 암거흐름의 양해적 해석)

  • Yoo, Dong-Hoon;Uhm, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.481-494
    • /
    • 2003
  • Flow through the culvert is very complex depending on the characteristics of hydraulic conditions. A design method using a monograph is normally employed due to the wide range of flow characteristics and the difficulty of calculating inlet water depth. The present study suggests the method for determining the inlet water depth of box culvert using Bernoulli's equation. By employing the explicit equation of inlet water depth, a standard design method of box culvert is developed for a wide range of flow characteristics. Explicit solution techniques are proposed to determine the width and height, slope and discharge of box culvert.

EFFECT OF THE ZETA POTENTIAL CONTROL BY THE TRAPEZOIDAL ELECTRODES IN A MICROCHANNEL ON ENHANCEMENT MIXING-PERFORMANCE (마이크로 채널 내 사다리꼴 전극의 제타 포텐셜 변화에 따른 혼합효과 증대에 대한 수치해석적 연구)

  • Suh, Y.K.;Heo, H.S.;Kang, J.F.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.46-51
    • /
    • 2006
  • This paper presents the numerical results of fluid flow and mixing in a microfluidic device for electro-osmotic flow (EOF) with an trapezoidal electrode array on the bottom wall (ETZEA). Differently from previous EOF in a channel which only transports fluid in colloidal system. ETZEA can also be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flow and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX-10, and a self-made code LBM-D. It was found that the flow near the trapezoidal electrode in the ETZEA is of 3-D complex flows due to the zeta potential difference between the trapezoidal electrode and channel walls, and as a consequence the hetrogeneous zeta potential on the electrodes plays an important role in mixing the liquid.

Two-Dimensional River Flow Analysis Modeling By Finite Element Method (유한요소법에 의한 2차원 하천 흐름 모형의 개발)

  • Han, Kun-Yeun;Kim, Sang-Ho;Kim, Byung-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.425-429
    • /
    • 2006
  • The understanding and prediction of the behavior of flow in open channels are important to the solution of a wide variety of practical flow problems in water resources engineering. Recently, frequent drought has increased the necessity of an effective water resources control and management of river flows for reserving instream flow. The objective of this study is to develop an efficient and accurate finite element model based on Streamline Upwind/Petrov-Galerkin(SU/PG) scheme for analyzing and predicting two dimensional flow features in complex natural rivers. Several tests were performed in developed all elements(4-Node, 6-Node, 8-Node elements) for the purpose of validation and verification of the developed model. The U-shaped channel of flow and natural river of flow were performed for tests. The results were compared with these of laboratory experiments and RMA-2 model. Such results showed that solutions of high order elements were better accurate and improved than those of linear elements. Also, the suggested model displayed reasonable velocity distribution compare to RMA-2 model in meandering domain for application of natural river flow. Accordingly, the developed finite element model is feasible and produces reliable results for simulation of two dimensional natural river flow. Also, One contribution of this study is to present that results can lead to significant gain in analyzing the accurate flow behavior associated with hydraulic structure such as weir and water intake station and flow of chute and pool.

  • PDF

Usability Test of Interface for Web Widget Using Work-Flow based on Mouse Tracking (마우스 트래킹 기반 작업흐름도를 이용한 웹 Widget 인터페이스 사용성 평가)

  • Han, Mi-Ran;Park, Peom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.763-770
    • /
    • 2010
  • The use of web widgets on desktop and mobile devices has been increasing rapidly. Web widgets provide access to activities and information from various sources across the web. As the number of supported widgets increases, managing widgets and finding relevant or interesting widgets becomes more complex. In addition, interacting with widgets in web service systems can be difficult, especially for novice users. Up to this point, there has been little research on web widget usability. This paper performs an experimental study regarding user interfaces of web widgets based on the mouse tracking and work-flow analysis. In the experiment, four sites providing widget services are chosen - iGoogle, Netvibes, My yahoo, and Wizard. The experiment participants perform three assigned tasks in the chosen sites, and their mouse operations are recorded using Camtasia, a screen casting software. Mouse tracking analysis is performed based on the recorded data in order to analyze common user behaviors. In addition, work-flow diagrams representing the operational flows to carry out the given tasks in each web site are constructed so as to visually and systematically analyze detailed usage patterns. The experimental study results presented in this paper can contribute to developing guidelines for highly usable and accessible interface design of web widgets.

A Study on Modification of Geographical Features Affecting Onset of Sea Breeze (지형적 특징이 해풍시작에 미치는 영향에 대한 연구)

  • 정우식;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.757-772
    • /
    • 2003
  • We simulate the geographical effects on the onset time of sea breeze at Suyoung and Haeundae districts by using the LCM (Local Circulation Model). The following can be found out from the numerical simulation on Case I (real terrain) which considered the real geography of Busan metropolitan area. Especially, as a result of analyzing the land breeze path, it could be found along the coastline as it flows out through low land coastal area. To find out more about the effects of terrain and geography on the onset time of sea breeze, the results of numerical simulation of virtual geography are as follows. In Case II (flat terrain), to find out how the terrain slope affects the onset of sea breeze, flat land and the ocean was considered. As a result, convergence of nighttime air mass at a Suyoung area and nighttime strong wind speed phenomenon was not shown. In Case III (modified flat terrain), to find out the effects of the irregularity of coastline affecting the onset of sea breeze, numerical simulation was carried out by simplifying the complex coastline into segments of straight coastline. So land breeze system and changing process of sea breeze after sunrise at Suyoung and Haeundae was simulated almost in a similar manner. Through this we could find the effects of coastal irregularities on onset of sea breeze.

A Statistical Model for Predicting Incipient Point and Quantity of Gas Condensate in Gas Pipelines (가스 배관내 가스 컨덴세이트의 발생 시작점 및 발생량 예측을 위한 통계 모델 연구)

  • Chang, Seung-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.1-5
    • /
    • 2006
  • With the rapid increase in gas consumption, the role of pipelines as a transportation means of natural gas is increasing. In general, when natural gas is being transported in pipelines, some liquid mainly from formation of condensate is introduced and this phenomenon makes operational problems more complex in the gas industry. Thus, an appropriate method is necessary for predicting the effect of presence of gas condensate on operational efficiency. In this study, a statistical model was developed using an integrated single- and two-phase flows concept. Using this model, the effects of the incipient point of gas condensate and its quantity on outlet pressure were analyzed. Also, the effect of variations of flow regimes in two-phase region on outlet pressure after the incipient point was analyzed.

  • PDF

A Study of Aerodynamic Analysis for the Wind Turbine Rotor Blade using a general CFD code (풍력 발전기용 블레이드 공력해석에 대한 연구)

  • Park, Sang-Gyoo;Kim, Jin-Bum;Yeo, Chang-Ho;Kim, Tae-Woo;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.516-520
    • /
    • 2009
  • This study describes aerodynamic characteristics for the HAWT (Horizontal Axis Wind Turbine) rotor blade using general CFD(Computational Fluid Dynamics) code. The boundary conditions for analysis are validated with the experimental result by the NREL (National Renewable Energy Laboratory)/NASA Ames wind tunnel test for S809 airfoil. In the case of wind turbine rotor blade, complex phenomena are appeared such as flow separation and re-attachment. Those are handled by using a commercial flow analysis tool. The 2-equation k-$\omega$ SST turbulence model and transition model appear to be well suited for the prediction. The 3-dimensional phenomena in the HAWT rotor blade is simulated by a commercial 3-D aerodynamic analysis tool. Tip vortex geometry and Radial direction flows along the blade are checked by the analysis.

  • PDF

High-resolution Simulation of Meteorological Fields over the Coastal Area with Urban Buildings (건물효과를 고려한 연안도시지역 고해상도 기상모델링)

  • Hwang, Mi-Kyoung;Kim, Yoo-Keun;Oh, In-Bo;Kang, Yoon-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.137-150
    • /
    • 2010
  • A meso-urban meteorological model (Urbanized MM5; uMM5) with urban canopy parameterization (UCP) was applied to the high-resolution simulation of meteorological fields in a complex coastal urban area and the assessment of urban impacts. Multi-scale simulations with the uMM5 in the innermost domain (1-km resolution) covering the Busan metropolitan region were performed during a typical sea breeze episode (4~8 August 2006) with detailed fine-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). An additional simulation using the standard MM5 was also conducted to identify the effects of urban surface properties under urban meteorological conditions. Results showed that the uMM5 reproduced well the urban thermal and dynamic environment and captured well the observed feature of sea breeze. When comparison with simulations of the standard MM5, it was found that the uMM5 better reproduced urban impacts on temperature (especially at nighttime) and urban wind flows: roughness-induced deceleration and UHI (Urban Heat Island)-induced convergence.

Analysis of Tidal Flow Using the Frequency Domain Finite Element Method (I) (유한요소법을 이용한 해수유동 해석 (I))

  • 권순국;고덕구;조국광;김준현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.73-83
    • /
    • 1991
  • A numerical simulation of a 2-dimensional tidal flow in a shallow sea was performed using the frequency domain finite element method. In this study, to overcome the inherent problems of a time domain model which requires high eddy viscosity and small time steps to insure numerical stability, the harmonic function incorporated with the linearized function of governing equations was applied. Calculations were carried out using the developed tidal model(TIDE) in a rectangular channel of lOm(depth) X 4km (width) X 25km(length) under the condition of tidal waves entering the channel closed at one end for both with and without bottom friction damping. The predicted velocities and water levels at different points of the channel were in close agreement with less than 1 % error between the numerical and analytical solutions. The results showed that the characteristics of the tidal flow were greatly affected by the magnitude of tidal elevation forcing, and not by on surface friction, wind, or the linear bottom friction when the value was less than 0.01. For the optimum size of grid to obtain a consistent solution, the ratio between the length of the maximum grid and the tidal wave length should be less than 0.0018. It was concluded that the finite element tidal model(TIDE) developed in this study could handle the numerical simulation of tidal flows for more complex geometrical conditions.

  • PDF

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.35-40
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convertive terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. In this paper k-$\varepsilon$ turbulence model with wall function is used to increase efficiency of computation times.

  • PDF