• Title/Summary/Keyword: Complementary filter

Search Result 124, Processing Time 0.027 seconds

Development of a Knee Exoskeleton for Rehabilitation Based EMG and IMU Sensor Feedback (단계별 무릎 재활을 위한 근전도 및 관성센서 피드백 기반 외골격 시스템 개발)

  • Kim, Jong Un;Kim, Ga Eul;Ji, Yeong Beom;Lee, A Ram;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.223-229
    • /
    • 2019
  • The number of knee-related disease patients and knee joint surgeries is steadily increasing every year, and for knee rehabilitation training for these knee joint patients, it is necessary to strengthen the muscle of vastus medialis and quadriceps femoris. However, because of the cost and time-consuming difficulties of receiving regular hospital treatment in the course of knee rehabilitation, we developed knee exoskeleton using rapid prototype for knee rehabilitation with feedback from the electromyogram (EMG) and inertia motion unit (IMU) sensor. The modules was built on the basis of EMG and an IMU sensor applied complementary filter, measuring muscle activity in the vastus medialis and the range of joint operation of the knee, and then performing the game based on this measurement. The IMU sensor performed up to 97.2% accuracy in experiments with ten subjects. The functional game contents consisted of an exergaming platform based on EMG and IMU for the real-time monitoring and performance assessment of personalized isometric and isotonic exercises. This study combined EMG and IMU-based functional game with knee rehabilitation training to enable voluntary rehabilitation training by providing immediate feedback to patients through biometric information, thereby enhancing muscle strength efficiency of rehabilitation.

Design of 3V CMOS Continuous-Time Filter Using Fully-Balanced Current Integrator (완전평형 전류 적분기를 이용한 3V CMOS 연속시간 필터 설계)

  • An, Jeong-Cheol;Yu, Yeong-Gyu;Choe, Seok-U;Kim, Dong-Yong;Yun, Chang-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.28-34
    • /
    • 2000
  • In this paper, a continuous-time filter for low voltage and high frequency applications using fully-balanced current integrators is presented. As the balanced structure of integrator circuits, the designed filter has improved noise characteristics and wide dynamic range since even-order harmonics are cancelled and the input signal range is doubled. Using complementary current mirrors, bias circuits are simplified and the cutoff frequency of filters can be controlled easily by a single DC bias current. As a design example, the 3rd-order lowpass Butterworth filter with a leapfrog realization is designed. The designed fully-balanced current-mode filter is simulated and examined by SPICE using 0.65${\mu}{\textrm}{m}$ CMOS n-well process parameters. The simulation results show 50MHz cutoff frequency, 69㏈ dynamic range with 1% total harmonic distortion(THD), and 4㎽ power dissipation with a 3V supply voltage.

  • PDF

Implementation of Highly Efficient GMR Color Filter using Asymmetric Si3N4 Gratings (비대칭 Si3N4 격자를 사용한 고효율 GMR 컬러 필터의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.225-230
    • /
    • 2017
  • In this paper, a highly efficient GMR(guided-mode resonant) color filter is proposed and implemented. The GMR color filter consists of $Si_3N_4/air$ layers containing complementary fixed and mobile gratings. The device is designed using RETT(rigorous equivalent transmission-line theory) and a grating structure operating in subwavelength. The numerical result reveals that the color filter has a tuning capability of about 35 nm over the $0.45{\mu}m{\sim}0.55{\mu}m$ range for blue-green color and across $0.6{\mu}m{\sim}0.7{\mu}m$ range for red color. Furthermore, The color filters have a spectral bandwidth of about 8 nm with efficiencies of 99%, 98%, and 99% at the center wavelength of blue, green, and red color, respectively, and these are higher efficiencies than reported in the literature previously.

A Regression of Miller Fisher Syndrome using Photic Feedback: Possibility of a New Complementary Therapy

  • Kamei, Tsutomu;Toriumi, Yoshitaka;Kumano, Hiroaki;Yasushi, Mitsuo
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.530-533
    • /
    • 2002
  • We present a case of The Miller Fisher Syndrome (MFS), showing a remission during a recently developed noninvasive therapy. Two weeks after an appearance of cough and fever, a 35 years old Japanese male developed diplopia, ataxia and numbness of his fingers and toes. He was diagnosed as MFS, and a fixed dose of prednisolone acetate (60mg/day) was administered for 3 months, but little improvement was observed. In addition to this administration, we tried 20 minutes of Photic Feedback (PFB) treatment daily for 40 days. The PFB system detects brain waves from the subject's forehead, and extracts alpha waves by the band-pass filter with a center frequency set at 10.0Hz. It also simultaneously modulates the augmentation of a red light-emitting diode, corresponding with the amplitudes of the extracted alpha waves. In this treatment, this adjusted photic stimulation was given to the subject's closed eyes, resulting in the effective alpha enhancement by photic driving response. The numbness increased during each of PFB treatment, but the symptoms started to improve gradually after 10 days. Other symptoms disappeared after 40 days. CD20 levels increased with this treatment. This case suggests that the PFB treatment may speed the natural remission of MFS. This treatment may be worth considering in patients who suffer polyneuropathy.

  • PDF

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

A Design of Novel Compact Microstrip Bandstop Filters Based on Split-Ring Resonators and Spiral Resonators (Split-Ring 공진기와 Spiral 공진기를 이용한 새로운 소형의 마이크로스트립 대역 저지 필터 설계)

  • Lee, Jong-Hyuk;Oh, Young-Chul;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.796-808
    • /
    • 2007
  • In this paper, two novel compact microstrip bandstop filters using complimentary split ring resonators(CSRRs) and spiral resonators is proposed. The first one is the bandstop filter using an array of CSRRs etched on the center line of a microstrip. The bandstop is due to the presence of negative effective permittivity and positive permeability near resonant frequency which prevent the wave propagation. The second on is the bandstop filter using an array of spiral resonators etched on the center line of a microstrip. The bandstop is due to the self-resonance of spiral circuit. We have achieved controllable resonance frequency and bandwidth, super compact dimension, low insertion losses in the passband and high level of rejection in the stopband with sharp cutoff. The electrical sizes of two proposed filter are very small. Additionally, they can be easily fabricated and compatible with MMIC or PCB technology.

Combining Adaptive Filtering and IF Flows to Detect DDoS Attacks within a Router

  • Yan, Ruo-Yu;Zheng, Qing-Hua;Li, Hai-Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.428-451
    • /
    • 2010
  • Traffic matrix-based anomaly detection and DDoS attacks detection in networks are research focus in the network security and traffic measurement community. In this paper, firstly, a new type of unidirectional flow called IF flow is proposed. Merits and features of IF flows are analyzed in detail and then two efficient methods are introduced in our DDoS attacks detection and evaluation scheme. The first method uses residual variance ratio to detect DDoS attacks after Recursive Least Square (RLS) filter is applied to predict IF flows. The second method uses generalized likelihood ratio (GLR) statistical test to detect DDoS attacks after a Kalman filter is applied to estimate IF flows. Based on the two complementary methods, an evaluation formula is proposed to assess the seriousness of current DDoS attacks on router ports. Furthermore, the sensitivity of three types of traffic (IF flow, input link and output link) to DDoS attacks is analyzed and compared. Experiments show that IF flow has more power to expose anomaly than the other two types of traffic. Finally, two proposed methods are compared in terms of detection rate, processing speed, etc., and also compared in detail with Principal Component Analysis (PCA) and Cumulative Sum (CUSUM) methods. The results demonstrate that adaptive filter methods have higher detection rate, lower false alarm rate and smaller detection lag time.

The Gain & Frequency Control of Current-Mode Active Filter with Transconductance-gm Value (트랜스컨덕턴스(gm)를 이용한 전류모드 능동필터의 이득 및 주파수 제어)

  • 이근호;조성익;방준호;김동룡
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.30-38
    • /
    • 1998
  • In this paper, a new CMOS current-mode integrator is proposed that can apply the basic building block of the low-voltage high frequency current-mode active filter. And tuning circuits that control the gain and unity gain frequency of them is designed. The proposed integrator is composed of the CMOS complementary circuit which can extend transconductance of an integrator. Therefore, the unity gain frequency which is determined transconductance and MOSFET gate capacitance can be expanded by the proposed integrator. The unity gain frequency of the proposed integrator is increased about two times larger than that of the conventional continuous-time integrator with NMOS-gm. And also, cut-off frequency and gain of the active filter can be controlled with the designed tuning circuit. From the result, we can reduce errors on fabrication. And then, 3rd-order low-pass active filter is designed as an application circuits. These results are verified by the small signal analysis and the 0.8$\mu\textrm{m}$ parameter HSPICE simulation.

  • PDF

Low-power Lattice Wave Digital Filter Design Using CPL (CPL을 이용한 저전력 격자 웨이브 디지털 필터의 설계)

  • 김대연;이영중;정진균;정항근
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.39-50
    • /
    • 1998
  • Wide-band sharp-transition filters are widely used in applications such as wireless CODEC design or medical systems. Since these filters suffer from large sensitivity and roundoff noise, large word-length is required for the VLSI implementation, which increases the hardware size and the power consumption of the chip. In this paper, a low-power implementation technique for digital filters with wide-band sharp-transition characteristics is proposed using CPL (Complementary Pass-Transistor Logic), LWDF (Lattice Wave Digital Filter) and a modified DIFIR (Decomposed & Interpolated FIR) algorithm. To reduce the short-circuit current component in CPL circuits due to threshold voltage reduction through the pass transistor, three different approaches can be used: cross-coupled PMOS latch, PMOS body biasing and weak PMOS latch. Of the three, the cross-coupled PMOS latch approach is the most realistic solution when the noise margin as well as the energy-delay product is considered. To optimize CPL transistor size with insight, the empirical formulas for the delay and energy consumption in the basic structure of CPL circuits were derived from the simulation results. In addition, the filter coefficients are encoded using CSD (Canonic Signed Digit) format and optimized by a coefficient quantization program. The hardware cost is minimized further by a modified DIFIR algorithm. Simulation result shows that the proposed method can achieve about 38% reductions in power consumption compared with the conventional method.

  • PDF

Study on Bilateral Exercise Interface Techniques for Active Rehabilitation of the Upper Limb Hemiplegia (상지 편마비 환자의 능동형 재활운동을 위한 양측성 훈련 인터페이스 기법에 대한 연구)

  • Eom, Su-Hong;Song, Ki-Sun;Jang, Mun-Suck;Lee, Eung-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.510-517
    • /
    • 2015
  • For the self-directed rehabilitation of upper extremity hemiplegia patients, in this paper we propose an interface method capable of doing bilateral exercises in rehabilitation robotics. This is a method for estimating information of movements from the unaffected-side, and projects it to the affected-side in order. That the affected-side is followed the movements of the unaffected-side. For estimation of the unaffected-side movements information, gyro sensor data and acceleration sensor data were fused. In order to improve the measurement error in data fusion, a HDR filter and a complementary filter were applied. Estimated motion information is derived the one side of the drive input of rehabilitation robot. In order to validate the proposed method, experimental equipment is designed to be similar to the body's joints. The verification was performed by comparing the estimation angle data from inertial sensors and the encoder data which were attached to the mechanism.