• Title/Summary/Keyword: Complementarity Problem

Search Result 50, Processing Time 0.025 seconds

Complementarity and nonlinear structural analysis of skeletal structures

  • Tin-Loi, F.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.491-505
    • /
    • 1997
  • This paper deals with the formulation and solution of a wide class of structures, in the presence of both geometric and material nonlinearities, as a particular mathematical programming problem. We first present key ideas for the nonholonomic (path dependent) rate formulation for a suitably discretized structural model before we develop its computationally advantageous stepwise holonomic (path independent) counterpart. A feature of the final mathematical programming problem, known as a nonlinear complementarity problem, is that the governing relations exhibit symmetry as a result of the introduction of so-called nonlinear "residuals". One advantage of this form is that it facilitates application of a particular iterative algorithm, in essence a predictor-corrector method, for the solution process. As an illustrative example, we specifically consider the simplest case of plane trusses and detail in particular the general methodology for establishing the static-kinematic relations in a dual format. Extension to other skeletal structures is conceptually transparent. Some numerical examples are presented to illustrate applicability of the procedure.

MERIT FUNCTIONS FOR MATRIX CONE COMPLEMENTARITY PROBLEMS

  • Wang, Li;Liu, Yong-Jin;Jiang, Yong
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.795-812
    • /
    • 2013
  • The merit function arises from the development of the solution methods for the complementarity problems defined over the cone of non negative real vectors and has been well extended to the complementarity problems defined over the symmetric cones. In this paper, we focus on the extension of the merit functions including the gap function, the regularized gap function, the implicit Lagrangian and others to the complementarity problems defined over the nonsymmetric matrix cone. These theoretical results of this paper suggest new solution methods based on unconstrained and/or simply constrained methods to solve the matrix cone complementarity problems (MCCP).

MIXED VECTOR FQ-IMPLICIT VARIATIONAL INEQUALITY WITH LOCAL NON-POSITIVITY

  • Lee, Byung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.425-432
    • /
    • 2009
  • This paper introduces a local non-positivity of two set-valued mappings (F,Q) and considers the existences and properties of solutions for set-valued mixed vector FQ-implicit variational inequality problems and set-valued mixed vector FQ-complementarity problems in the neighborhood of a point belonging to an underlined domain K of the set-valued mappings, where the neighborhood is contained in K. This paper generalizes and extends many results in [1, 3-7].

SOME PROPERTIES OF THE CLASSES OF MATRICES IN THE LINEAR COMPLEMENTARITY PROBLEMS

  • LEE, YOUNG-CHEN
    • Honam Mathematical Journal
    • /
    • v.19 no.1
    • /
    • pp.157-164
    • /
    • 1997
  • We are concerned with three classes of matrices that are relevant to the linear complementary problem. We prove that within the class of $P_0$-matrices, the Q-matrices are precisely the regular matrices and we show that the same characterizations hold for an L-matrix as well, and that the symmetric copositive-plus Q-matrices are precisely those which are strictly copositive.

  • PDF

Dynamic Output-Feedback Controller Design for Stochastic Time-Delay Systems (스토캐스틱 시간지연 시스템을 위한 동적 출력궤환 제어기 설계)

  • Choi, Hyoun-Chul;Jung, Jin-Woo;Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.462-463
    • /
    • 2008
  • This paper proposes a method for dynamic output-feedback controller design for stochastic time-delay systems. Based on recent results on time-delay systems control, a tractable and delay-dependent design condition is proposed, which provides a dynamic output-feedback controller to render the closed-loop stochastic time-delay systems to be asymptotically stable in the mean-square sense. The feasibility problem of the proposed condition is recast into a cone complementarity problem. An algorithm adopting cone complementarity linearization is presented to solve the resulting problem.

  • PDF

ANALYSIS OF SMOOTHING NEWTON-TYPE METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS

  • Zheng, Xiuyun
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1511-1523
    • /
    • 2011
  • In this paper, we consider the smoothing Newton method for the nonlinear complementarity problems with $P_0$-function. The proposed algorithm is based on a new smoothing function and it needs only to solve one linear system of equations and perform one line search per iteration. Under the condition that the solution set is nonempty and bounded, the proposed algorithm is proved to be convergent globally. Furthermore, the local superlinearly(quadratic) convergence is established under suitable conditions. Preliminary numerical results show that the proposed algorithm is very promising.

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-669
    • /
    • 2010
  • In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.

Analysis of Incipient Sliding Contact with Orthotropic Friction Condition Subjected to Tangential Load and Twisting Moment (접선하중과 비틀림모멘트를 받는 직교이방성 마찰조건의 정지미끄럼접촉 해석)

  • 이성철;곽병만;권오관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2026-2038
    • /
    • 1994
  • A numerical scheme is developed for the analysis of incipient sliding contact with orthotropic friction condition subjected to tangential load and twisting moment. The inherent nonlinearity in the orthotropic friction law has been treated by a polyhedral friction law. Then, a three-dimensional linear complementarity problem(LCP) formulation in an incremental form is obtained, and the existence of a solution is investigated. A Lemke's complementary pivoting algorithm is used for solving the LCP. The scheme is illustrated by spherical contact problems, and the effects of eccentricity of elliptical friction domain on the traction and stick region are discussed.