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MERIT FUNCTIONS FOR MATRIX CONE

COMPLEMENTARITY PROBLEMS†

LI WANG∗, YONG-JIN LIU AND YONG JIANG

Abstract. The merit function arises from the development of the solution
methods for the complementarity problems defined over the cone of non-
negative real vectors and has been well extended to the complementarity

problems defined over the symmetric cones. In this paper, we focus on the
extension of the merit functions including the gap function, the regularized
gap function, the implicit Lagrangian and others to the complementarity
problems defined over the nonsymmetric matrix cone. These theoretical

results of this paper suggest new solution methods based on unconstrained
and/or simply constrained methods to solve the matrix cone complemen-
tarity problems (MCCP).
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1. Introduction

Matrix optimization problems have recently found many important appli-
cations, for example, in nuclear norm relaxations of affine rank minimization
problems [4], see [8] for more examples. The recent work by Ding, Sun and
Toh [8] has defined a class of linear conic programming (which is called matrix
cone programming or MCP) involving the epigraphs of five commonly used ma-
trix norms and studied many important properties of the corresponding metric
projection. The matrix cone complementarity problem (MCCP), serving as the
counterpart of MCP, deserves to be studied.

We first formally give the description of matrix cone complementarity problem
(MCCP). Let ℜm×n be the linear space of all m × n real matrices equipped
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with the inner product ⟨X,Y ⟩ = Tr(XTY ) for X and Y in ℜm×n, where “Tr”
denotes the trace, i.e., the sum of the diagonal entries of a square matrix. For
each X ∈ ℜm×n, let ∥X∥∗ denote the nuclear norm of X, i.e., the sum of the
singular values of X, and ∥X∥2 denote the spectral norm of X, i.e., the largest
singular value of X. Let H be the finite dimensional Hilbert space of ℜ×ℜm×n

with the natural inner product being given by

⟨(t,X), (τ, Y )⟩ := tτ + ⟨X,Y ⟩ = tτ +Tr(XTY ).

Then, we define two convex cones in H as follows

Km,n
∗ := {(τ, Y ) ∈ ℜ × ℜm×n | τ ≥ ∥Y ∥∗}

and
Km,n

2 := {(t,X) ∈ ℜ × ℜm×n | t ≥ ∥X∥2}.
It is well known (see, e.g. [8]) that one of these two cones is the dual cone of
another, where for any subset C of H, the dual cone of C, denoted by C∗, is
defined as

C∗ = {a ∈ H |⟨a, b⟩ ≥ 0, ∀ b ∈ C}. (1)

Without any confusion, in the remainder of this paper, we simply use K∗ and
K2 to represent Km,n

∗ and Km,n
2 , respectively.

Let Ω denote a subspace of the space H. Then, the matrix cone complemen-
tarity problem (MCCP) considered in this paper is to find, for given mappings
F : Ω → H and G : Ω → H, an x ∈ Ω satisfying

F (x) ∈ K2, G(x) ∈ K∗, ⟨F (x), G(x)⟩ = 0. (2)

A function f : Ω → [0,∞) is said to be a merit function on a set Ω ⊂ H
(typically Ω = H or Ω = G−1(K∗)), provided that x satisfies (2) if and only
if f(x) = 0. Using a merit function, we can express MCCP as the following
unconstrained minimization problem:

min f(x)
s.t. x ∈ Ω

and apply a feasible descent method, such as conjugate gradient methods and
quasi-Newton methods, to solve this minimization problem. In this paper, we
shall study merit functions for MCCP.

During the last thirty years, researchers have proposed various methods such
as the interior-point methods, the semismooth Newton methods, the smooth-
ing Newton methods, and the merit-function-based methods for solving lin-
ear/nonlinear complementarity problems (LCP/NCP)(see [5, 9, 14, 22, 23, 31]
and references therein), second-order cone complementarity problems (SOCCP)
(see [6, 12, 16, 21, 27, 29, 30, 34, 35] and references therein), semi-definite comple-
mentarity problems (SDCP) (see [7, 24, 30, 33, 34, 36] and references therein)
and, more generally, symmetric cone complementarity problems (SCCP) (see
[10, 13, 17, 18, 20, 28, 32, 38] and references therein). However, to the best
of our knowledge, the solution methods for MCCP have not been well investi-
gated due to the fact that MCCP is not included in the setting of symmetric
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cone complementarity problems. Motivated by the effectiveness of the merit-
function-based methods for solving LCP/NCP, our goal is to apply them to
solve MCCP. For the merit-function-based methods to be effective, the choice
of merit functions is crucial. This main objective of this paper is just to study
various choices of merit functions for MCCP. We shall extend five kinds of merit
functions which are the projection residual function, the gap function, the regu-
larized gap function, the implicit Lagrangian and a function of Luo and Tseng to
MCCP. Moreover, for each of the above five choices of merit functions, we have
derived conditions for the merit function to be convex and/or differentiable, and
for the stationary point of the merit function to be a solution of MCCP. These
properties make it possible to apply the merit-function-based methods to solve
MCCP.

Five choices for a merit function are outlined as follows. The earliest choice
is the gap function

f(x) := max
ζ∈K∗

{⟨F (x), G(x)− ζ⟩} (3)

proposed by Auslender [3] and Hearn [14] in the context of LCP/NCP, which is
a merit function on G−1(K∗) (see Section 4).

There is a “dual” version of this gap function, given by

f(x) := max
ζ∈K∗

{⟨F (G−1(ζ)), G(x)− ζ⟩}, (4)

which is a merit function on G−1(K∗) provided that F and G are relatively pseu-
domonotone (see Section 2 for the definition) on G−1(K∗) and F is continuous
on G−1(K∗), and G

−1 is defined and continuous on K∗ (see Section 4).
A second choice is the regularized gap function, parameterized by a scalar

α > 0,

fα(x) := max
ζ∈K∗

{⟨F (x), G(x)− ζ⟩ − 1

2α
∥G(x)− ζ∥2} (5)

proposed independently by Fukushima [11] and Auchmuty [2], which is a merit
function on G−1(K∗) (see Section 5).

A third choice is the implicit Lagrangian function, parameterized by a scalar
α > 1,

fα(x) := max
ζ∈K∗, ξ∈K2

{⟨F (x), G(x)− ζ⟩ − ⟨ξ,G(x)⟩

− 1

2α
(∥F (x)− ξ∥2 + ∥G(x)− ζ∥2)}

(6)

proposed by Mangasarian and Solodov [23] in the context of NCP, which is a
merit function on Ω (see Section 6).

A fourth choice is the function

f(x) := ∥F (x)−ΠK2(F (x)−G(x))∥2, (7)
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which is a merit function on Ω (see Section 3). Here ΠK2(·) denotes the metric
projection onto K2, i.e.,

ΠK2(x) = argmin
ξ∈K2

∥x− ξ∥.

A fifth choice is the following function

f(x) := ψ0(⟨F (x), G(x)⟩) + ψ(F (x), G(x)), (8)

where ψ0 : ℜ → [0,∞) satisfies ψ0(t) = 0 if and only if t ≤ 0 and ψ : H×H →
[0,∞) satisfies

ψ(x, y) = 0, ⟨x, y⟩ ≤ 0 if and only if x ∈ K2, y ∈ −K∗, ⟨x, y⟩ = 0. (9)

This function, developed by Luo and Tseng [22] in the context of NCP and
extended by Tseng [36] to SDCP, is a merit function on Ω (see Section 7).

2. Preliminaries

In this section, we review some preliminary results related to the Moreau-
Yosida regularization of a convex function and the metric projection onto a
closed convex cone.

Definition 2.1 ([26, 37]). Let H be a Hilbert space and g : H → (−∞,+∞]
be a closed convex, proper and lower semicontinuous function. The proximal
mapping Pg and the Moreau-Yosida regularization ψg are defined by

Pg(x) = argmin
y∈H

{g(y) + 1

2
∥x− y∥2}

and

ψg(x) = min
y∈H

{g(y) + 1

2
∥x− y∥2},

respectively.

We first give some well-known properties (see, e.g., [15, 25]) of Pg and ψg.
For additional properties, see, e.g., [15, 19].

Lemma 2.2. Let g : H → ℜ be a closed convex, proper and lower semicontinuous
function, ψg be the Moreau-Yosida regularization of g, and Pg be the associated
proximal mapping. Then the following hold:

(i): The Moreau-Yosida regularization ψg is continuously differentiable,
and furthermore, it holds that

∇ψg(x) = x− Pg(x).

(ii): For any x ∈ H has the decomposition

x = Pg(x) + Pg∗(x),

where g∗ is the conjugate of the function g.
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We next give some useful properties of the metric projection onto a closed
convex cone, which plays an important role in our subsequent analysis. Let Z be
a finite dimensional real Euclidean space equipped with an inner product ⟨·, ·⟩
and its induced norm ∥·∥. Let C be a nonempty closed convex set in Z. For any
z ∈ Z, let ΠC(z) denote the metric projection of z onto C, which is the unique
optimal solution to following convex optimization problem:

min
1

2
∥y − z∥2

s.t. y ∈ C.
(10)

It is well known [39] that ΠC(z) is globally Lipschitz continuous with modulus 1.
When C is a closed convex cone, we summarize the following useful properties
of the metric projection without proofs.

Lemma 2.3. Let C ⊆ Z be a nonempty closed convex cone. Denote by Co =
−C∗ the polar of C. Then the following hold:

(i): The point ȳ ∈ C solves (10) if and only if{
⟨z − ȳ, ȳ⟩ = 0,

⟨z − ȳ, d⟩ ≤ 0, ∀d ∈ C.
(11)

(ii): For any z ∈ Z, one has

z = ΠC(z) + ΠCo(z) (12)

and

ΠC(z) = −ΠCo(−z) = −Π−C∗(−z). (13)

(iii): For any x, y ∈ Z, one has that x = ΠC(x+ y) or y = ΠCo(x+ y) if
and only if

⟨x, y⟩ = 0, x ∈ C, y ∈ Co. (14)

Before closing this section, we need the following related concepts on the
function F and G. We say that F and G are relatively pseudo-monotone on
Ω ⊂ H if

⟨F (x), G(x)−G(x′)⟩ ≤ 0 ⇒ ⟨F (x′), G(x)−G(x′)⟩ ≤ 0, ∀x, x′ ∈ Ω.

More restrictively, F and G are relatively monotone on Ω if

⟨F (x)− F (x′), G(x)−G(x′)⟩ ≥ 0, ∀x, x′ ∈ Ω

and F and G are relatively strongly monotone on Ω if there exists a γ ∈ (0,∞)
such that

⟨F (x)− F (x′), G(x)−G(x′)⟩ ≥ γ∥x− x′∥2, ∀x, x′ ∈ Ω.

In the case where G ≡ I, the above three conditions reduce to F being, re-
spectively, pseudo-monotone, monotone, and strongly monotone. When F is
differentiable (in the Fréchet sense) on Ω ⊂ H, we denote by ∇F (x) the Jaco-
bian of F at each x ∈ Ω, viewed as a mapping from Ω to H. When a function
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f : Ω → ℜ is differentiable (in the Fréchet sense) on Ω, we denote by ∇f the
gradient of f , viewed as a mapping from Ω to ℜ.

3. Projection Residual Function

In this section, the merit function f defined by (7) will be studied, which has
a relatively simple structure and is related to the growth rate of many other
merit functions.

Lemma 3.1. For any a, b ∈ H
(i) We have a ∈ K2, b ∈ K∗, ⟨a, b⟩ = 0 if and only if a = ΠK2(a− b);
(ii) We have a ∈ K2, b ∈ K∗, ⟨a, b⟩ = 0 if and only if b = ΠK∗(b− a).

Proof. (i) follows from the duality of K2 and K∗ and item (iii) of Lemma 2.3.
(ii) follows from the duality of K2 and K∗ and item (iii) of Lemma 2.3. This
completes the proof. �

According to Lemma 1.2, the function f difined by (7) is a merit function on
Ω. We next show that f has a quadratic growth rate.

Theorem 3.2. Let f : Ω → ℜ be given by (7). Then the following hold:

(i): For any x ∈ Ω, we have f(x) ≥ 0 with f(x) = 0 if and only if x
satisfies (2);

(ii): If F and G are Lipschitz continuous with the constants LF , LG and
relatively strongly monotone on Ω with the constant γ, then there exists
a constant c > 0 such that f(x) ≥ c∥x − x∗∥2 for all x ∈ Ω, where x∗

denotes the unique solution to (2).

Proof. (i) follows from Lemma 3.1.
(ii) Since x∗ is the unique solution to (2), we have f(x∗) = 0 by using (i), i.e.,

F (x∗)−ΠK2(F (x
∗)−G(x∗)) = 0. For any x ∈ Ω, we get that

f(x) = ∥F (x)−ΠK2(F (x)−G(x))− (F (x∗)−ΠK2(F (x∗)−G(x∗)))∥2

≥ |(∥F (x)− F (x∗)∥ − ∥ΠK2(F (x)−G(x))−ΠK2(F (x∗)−G(x∗))∥)2|

≥ |(∥F (x)− F (x∗)∥ − ∥(F (x)− F (x∗))− (G(x)−G(x∗))∥)2|

= | − (∥F (x)− F (x∗)∥ − ∥(F (x)− F (x∗))− (G(x)−G(x∗))∥)2|

= | − ∥F (x)− F (x∗)∥2 + 2∥F (x)− F (x∗)∥∥(F (x)− F (x∗))− (G(x)−G(x∗))∥

− ∥(F (x)− F (x∗))− (G(x)−G(x∗))∥2|
≥ | − 2∥F (x)− F (x∗)∥∥G(x)−G(x∗)∥+ 2⟨F (x)− F (x∗), G(x)−G(x∗)⟩

− ∥G(x)−G(x∗)∥2|

≥ |2γ − LG(2LF + LG)|∥x− x∗∥2.

Let c = |2γ −LG(2LF +LG)| > 0, then there exists a constant c > 0 such that

f(x) ≥ c∥x− x∗∥2 for all x ∈ Ω.

This completes the proof. �
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4. Gap Functions

In this section, we study the gap function f given by (3) and the “dual”
version of the gap function defined by (4).

Theorem 4.1. Let f : G−1(K∗) → ℜ ∪∞ be given by (3). Then the following
hold:

(i): For any x ∈ G−1(K∗), we have f(x) ≥ 0 with f(x) = 0 if and only if
x satisfies (2);

(ii): If F and G are affine and relatively monotone on G−1(K∗), then f is
convex on G−1(K∗).

Proof. (i) Fix any x ∈ G−1(K∗), which implies that G(x) ∈ K∗. If F (x) ∈ K2,
we obtain that ⟨F (x), G(x)⟩ ≥ 0 and ⟨F (x), ζ⟩ ≥ 0 for all ζ ∈ K∗. Otherwise,
there exists a ζ ∈ K∗ such that ⟨ζ, F (x)⟩ < 0, implying F (x) = ∞. Hence,
it follows from (3) that f(x) = ⟨F (x), G(x)⟩ ≥ 0 and f(x) = 0 if and only if
F (x) ∈ K2 and ⟨F (x), G(x)⟩ = 0.

(ii) Consider any ζ ∈ K∗ and let fζ(x) = ⟨F (x), G(x) − ζ⟩. For any x, x′ ∈
G−1(K∗) and any t ∈ [0, 1], by using the affine property and the relative mono-
tonicity of F and G, we have

fζ(tx+ (1− t)x′) = ⟨F (tx+ (1− t)x′), G(tx+ (1− t)x′)− ζ⟩
= ⟨tF (x) + (1− t)F (x′), t(G(x)− ζ) + (1− t)(G(x′)− ζ)⟩
= tfζ(x) + (1− t)fζ(x

′) + t(1− t)⟨F (x)− F (x′), G(x′)−G(x)⟩
≥ tfζ(x) + (1− t)fζ(x

′).

Then fζ is convex on G−1(K∗). Hence f is also convex on G−1(K∗) for f is the
pointwise maximum of fζ . This completes the proof. �

Theorem 4.2. Assume F and G are relatively pseudo-monotone on G−1(K∗),
F is continuous on G−1(K∗), and G−1 is defined and continuous on K∗. Let
f : G−1(K∗) → ℜ∪∞ be given by (4). Then the following hold:

(i): For any x ∈ G−1(K∗), we have that f(x) ≥ 0 with f(x) = 0 if and
only if x satisfies (2);

(ii): If in addition G is affine on G−1(K∗), then f is convex on G−1(K∗).

Proof. (i) Fix any x ∈ G−1(K∗). Then G(x) ∈ K∗. From (4), we conclude
that f(x) ≥ 0. If F (x) ∈ K2 and ⟨F (x), G(x)⟩ = 0, by using (1) we have
⟨F (x), G(x) − ζ⟩ ≤ 0 for all ζ ∈ K∗. The relative pseudo-monotonicity of F
and G would imply that ⟨F (G−1(ζ)), G(x) − ζ⟩ ≤ 0 for all ζ ∈ K∗, which
means that f(x) ≤ 0. Hence f(x) = 0. Conversely, if f(x) = 0, we have
F (G−1(ζ)), G(x)− ζ⟩ ≤ 0 for all ζ ∈ K∗. Let x(t) = G−1(tζ ′ + (1− t)G(x)) for
any ζ ′ ∈ K∗ and t ∈ (0, 1). According to the relative pseudo-monotonicity of F
and G, we get that

⟨F (x(t)), G(x)− ζ ′⟩ = 1

t
⟨F (x(t)), G(x)− (tζ ′ + (1− t)G(x))⟩ ≤ 0.
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Letting t→ 0 and using the continuity of F andG−1, we obtain that ⟨F (x), G(x)−
ζ ′⟩ ≤ 0, which together with (1), implies that F (x) ∈ K2 and ⟨F (x), G(x)⟩ = 0.

(ii) Since G is affine on G−1(K∗), the function fζ(x) = ⟨F (G−1(ζ)), G(x)− ζ⟩
is affine on G−1(K∗) for each ζ ∈ K∗. Hence f , being the pointwise maximum
of fζ and ζ ∈ K∗, is convex on G−1(K∗). This completes the proof. �

5. Regularized Gap Function

In this section, we study the regularized gap function fα(x) given by (5). We
begin with the following lemma.

Lemma 5.1. For any α ∈ (0,∞), define the function ψα : H×H → ℜ by

ψα(a, b) = max
ζ∈K∗

{⟨a, b− ζ⟩ − 1

2α
∥b− ζ∥2}.

Then the following hold:

(i): For all a ∈ H, b ∈ K∗, we have

ψα(a, b) ≥
1

2α
∥b−ΠK∗(b− αa)∥2, (15)

and ψα(a, b) = 0 if and only if in addition a ∈ K2 and ⟨a, b⟩ = 0.
(ii): ψα is differentiable at every a, b ∈ H with

∇aψα(a, b) = b−ΠK∗(b− αa), ∇bψα(a, b) = a− 1

α
(b−ΠK∗(b− αa)).

Proof. (i) For any a, b ∈ H, let

gα(ζ) = ⟨a, b− ζ⟩ − 1

2α
∥b− ζ∥2.

Then, we get that

ψα(a, b) = max
ζ∈K∗

{⟨a, b− ζ⟩ − 1

2α
∥b− ζ∥2}

= − 1

2α
min
ζ∈K∗

{∥ζ − (b− αa)∥2 − α2∥a∥2},

which implies that the maximum point of gα(ζ) is ζ̄ = ΠK∗(b − αa). Thus, for
all a ∈ H, b ∈ K∗, we have the following

ψα(a, b)−
1

2α
∥b− ζ̄∥2 = gα(ζ̄)−

1

2α
∥b− ζ̄∥2

= ⟨a, b− ζ̄⟩ − 1

α
∥b− ζ̄∥2

=
1

α
⟨ζ̄ − (b− αa), b− ζ̄⟩

≥ 0,

where the inequality follows from that ⟨b−ΠK∗(b−αa), b−αa−ΠK∗(b−αa)⟩ =
⟨b − ΠK∗(b − αa),Π−K2(b − αa)⟩ ≤ 0. Hence ψα(a, b) ≥ 1

2α∥b − ΠK∗(b − αa)∥2
for all a ∈ H and b ∈ K∗.
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If a ∈ K2 and ⟨a, b⟩ = 0, for any α ∈ (0,∞), we have ⟨αa, b⟩ = 0. It follows
from Lemma 3.1 that b = ΠK∗(b− αa) = ζ̄. Thus,

ψα(a, b) = max
ζ∈K∗

{⟨a, b− ζ⟩ − 1

2α
∥b− ζ∥2}

= ⟨a, b− ζ̄⟩ − 1

2α
∥b− ζ̄∥2

= 0.

Conversely, if ψα(a, b) = 0, it follows from (15) that b = ΠK∗(b − αa). Ac-
cording to Lemma 3.1 (ii), we deduce that αa ∈ K2 and ⟨αa, b⟩ = 0 for any
α ∈ [0,∞). If α = 1, we have a ∈ K2 and ⟨a, b⟩ = 0.

(ii) follows from Lemma 2.2 (i).
Combing (i) and (ii), we complete the proof. �

We will relate fα to the norm of the projection residual functions Rα : Ω → Ω
for any α ∈ (0,∞) defined by

Rα(x) := G(x)−ΠK∗(G(x)− αF (x)).

By using Lemma 3.1 (ii), we have that x satisfies (2) if and only if Rα(x) =
0. By using Lemma 5.1, we obtain the following theorem which estimates the
growth rate of fα in terms of ∥Rα∥, and gives formulas for ∇fα and a certain
descent direction for fα at any nonglobal minimum x ∈ G−1(K∗) with ∇G(x)
invertible and ∇G(x)−1∇F (x) satisfying the condition below

⟨a,∇G(x)−1∇F (x)a⟩ > 0 (16)

for all a ∈ H.

Theorem 5.2. Fix any α ∈ (0,∞) and let fα : G−1(K∗) → ℜ be given by (5).
Then the following hold:

(i): For all x ∈ G−1(K∗), we have

fα(x) ≥
1

2α
∥Rα(x)∥2,

and fα(x) = 0 if and only if x satisfies (2).
(ii): If F and G is differentiable on G−1(K∗). Then, so is fα and

∇fα(x) = ∇F (x)Rα(x) +∇G(x)(F (x)− 1

α
Rα(x))

for all x ∈ K∗.
(iii): Assume that F and G are differentiable on G−1(K∗). Then, for every
x ∈ G−1(K∗) where ∇G(x) is invertible and ∇G(x)−1∇F (x) satisfies
(16), either fα(x) = 0 or ∇fα(x) ̸= 0 with ⟨d(x),∇fα(x)⟩ < 0, where

d(x) = −(∇G(x)−1)∗Rα(x)

and (∇G(x)−1)∗ is the adjoint operator of ∇G(x)−1.
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Proof. (i) and (ii) follow from Lemma 5.1, we omit it. Now we show that (iii)
is valid. Fix any x ∈ G−1(K∗) with ∇G(x) invertible and ∇G(x)−1∇F (x)
satisfying the condition (16). Then

⟨d(x),∇fα(x)⟩ = −⟨Rα(x),∇G(x)−1∇F (x)Rα(x) + F (x)− 1

α
Rα(x)⟩

≤ −⟨Rα(x),∇G(x)−1∇F (x)Rα(x)⟩,
where the inequality follows from Lemma 2.3 that

⟨G(x)−ΠK∗(G(x)− αF (x)), G(x)− αF (x)−ΠK∗(G(x)− αF (x))⟩
= ⟨G(x)−ΠK∗(G(x)− αF (x)),Π−K2(G(x)− αF (x))⟩
≤ 0.

Since ∇G(x)−1∇F (x) satisfies (16), then either Rα(x) = 0 or ⟨d(x),∇fα(x)⟩ <
0. We know that Rα(x) = 0 implies that x satisfies (2), it follows from (i) that
fα(x) = 0. This completes the proof. �

6. Implicit Lagrangian Function

In this section, the implicit Lagrangian function fα defined by (6) will be
discussed. We establish the following lemma and theorem.

Lemma 6.1. For any α ∈ (0,∞), define the function ψα : H×H → ℜ by

ψα(a, b) = max
ξ∈K2, ζ∈K∗

{⟨a, b− ζ⟩ − ⟨ξ, b⟩ − 1

2α
(∥a− ξ∥2 + ∥b− ζ∥2)}.

Then the following hold:

(i): Fix any α ∈ (1,∞). For all a, b ∈ H, we have

(α−1)∥b−ΠK∗(b−a)∥2 ≥ ψα(a, b) = −ψ 1
α
(a, b) ≥ (1− 1

α
)∥b−ΠK∗(b−a)∥2 (17)

and ψα(a, b) = 0 if and only if in addition a ∈ K2, b ∈ K∗ and ⟨a, b⟩ = 0.
(ii): Fix any α ∈ (0,∞). ψα is differentiable at every (a, b) ∈ Ω× Ω, with

∇aψα(a, b) = b−ΠK∗(b− αa)− 1

α
(a−ΠK2(a− αb)),

∇bψα(a, b) = a−ΠK2(a− αb)− 1

α
(b−ΠK∗(b− αa)).

Proof. (i) Fix any α ∈ (1,∞). For any a, b ∈ H, we first verify that

ψα(a, b) = −ψ 1
α
(a, b).

By careful calculation, we have

ψα(a, b) = max
ξ∈K2, ζ∈K∗

{⟨a, b− ζ⟩ − ⟨ξ, b⟩ − 1

2α
(∥a− ξ∥2 + ∥b− ζ∥2)}

= max
ξ∈K2

{− 1

2α
∥a− ξ∥2 − ⟨ξ, b⟩}+ max

ζ∈K∗
{− 1

2α
∥b− ζ∥2 − ⟨a, ζ⟩}+ ⟨a, b⟩

= max
ξ∈K2

{− 1

2α
∥ξ − (a− αb)∥2 + 1

2α
∥a− αb∥2 − 1

2α
∥a∥2} (18)
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+ max
ζ∈K∗

{− 1

2α
∥ζ − (b− αa)∥2 − 1

2α
∥b− αa∥2 − 1

2α
∥b∥2}+ ⟨a, b⟩

=
1

2α
∥ΠK2(a− αb)∥2 − 1

2α
∥a∥2 + 1

2α
∥ΠK∗(b− αa)∥2 − 1

2α
∥b∥2 + ⟨a, b⟩

and

−ψ 1
α
(a, b) = − max

ξ∈K2, ζ∈K∗
{⟨a, b− ζ⟩ − ⟨ξ, b⟩ − α

2
(∥a− ξ∥2 + ∥b− ζ∥2)}

= min
ξ∈K2, ζ∈K∗

{α
2
(∥a− ξ∥2 + ∥b− ζ∥2)− ⟨a, b⟩+ ⟨a, ζ⟩+ ⟨ξ, b⟩}

= min
ξ∈K2

{α
2
∥a− ξ∥2 + ⟨ξ, b⟩}+ min

ζ∈K∗
{α
2
∥b− ζ∥2 + ⟨a, ζ⟩} − ⟨a, b⟩

= min
ξ∈K2

{α
2
∥ξ − (a− α−1b)∥2 − α

2
∥a− α−1b∥2 + α

2
∥a∥2} (19)

+ min
ζ∈K∗

{α
2
∥ζ − (b− α−1a)∥2 − α

2
∥b− α−1a∥2 + α

2
∥b∥2} − ⟨a, b⟩

= − 1

2α
∥ΠK2(αa− b)∥2 + α

2
∥a∥2 − 1

2α
∥ΠK∗(αb− a)∥2 + α

2
∥b∥2 − ⟨a, b⟩.

According to Lemma 2.3, (18) and (19), we have

ψα(a, b)− (−ψ 1
α
(a, b))

=
1

2α
∥ΠK2(a− αb)∥2 + 1

2α
∥ΠK∗(b− αa)∥2 + 1

2α
∥ΠK2(αa− b)∥2 + 1

2α
∥ΠK∗(αb− a)∥2

− 1

2α
∥a∥2 − α

2
∥a∥2 − 1

2α
∥b∥2 − α

2
∥b∥2 + 2⟨a, b⟩

=
1

2α
(∥ΠK2(a− αb)∥2 + ∥ΠK∗(αb− a)∥2) + 1

2α
(∥ΠK2(αa− b)∥2 + ∥ΠK∗(b− αa)∥2)

− 1

2α
∥a− αb∥2 − 1

2α
∥b− αa∥2

= 0,

where the second equality follows from that ∥ΠK2(a−αb)∥2+∥ΠK∗(αb−a)∥2 =
∥a− αb∥2 and ∥ΠK2(αa− b)∥2 + ∥ΠK∗(b− αa)∥2 = ∥b− αa∥2. This shows that
ψα(a, b) = −ψ 1

α
(a, b).

We show below that ψα(a, b) ≥ (1− 1
α )∥b− ΠK∗(b− a)∥2. For any a, b ∈ H,

let

ξ0 = ΠK2(a− b), ζ0 = ΠK∗(b− a)

and

gα(ξ, ζ) = ⟨a, b− ζ⟩ − ⟨ξ, b⟩ − 1

2α
(∥a− ξ∥2 + ∥b− ζ∥2).

Then, from the definition of ψα, we know that

ψα(a, b) ≥ gα(ξ0, ζ0). (20)

Next, we compute gα(ξ0, ζ0). Recalling that

b− a = ΠK∗(b− a) + Π−K2
(b− a), a− b = ΠK2(a− b) + Π−K∗(a− b),

⟨Π−K2
(b− a),ΠK∗(b− a)⟩ = 0, Π−K2

(b− a) = −ΠK2(a− b),
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we obtain by direct calculation that

gα(ξ0, ζ0) = ⟨a, b−ΠK∗(b− a)⟩ − ⟨ΠK2(a− b), b⟩

− 1

2α
(∥a−ΠK2(a− b)∥2 + ∥b−ΠK∗(b− a)∥2)

= ⟨b−ΠK∗(b− a)−Π−K2
(b− a), b−ΠK∗(b− a)⟩

− ⟨ΠK2(a− b), b⟩ − 1

2α
(∥a−ΠK2(a− b)∥2 + ∥b−ΠK∗(b− a)∥2)

= ∥b−ΠK∗(b− a)∥2 − ⟨Π−K2
(b− a), b−ΠK∗(b− a)⟩

− ⟨ΠK2
(a− b), b⟩ − 1

2α
(∥a−ΠK2

(a− b)∥2 + ∥b−ΠK∗(b− a)∥2)

= ∥b−ΠK∗(b− a)∥2 − ⟨Π−K2
(b− a), b⟩ − ⟨ΠK2(a− b), b⟩

− 1

2α
(∥a−ΠK2(a− b)∥2 + ∥b−ΠK∗(b− a)∥2)

= ∥b−ΠK∗(b− a)∥2 + ⟨ΠK2(a− b), b⟩ − ⟨ΠK2(a− b), b⟩

− 1

2α
(∥a−ΠK2(a− b)∥2 + ∥b−ΠK∗(b− a)∥2)

= ∥b−ΠK∗(b− a)∥2 − 1

2α
(∥a−ΠK2(a− b)∥2 + ∥b−ΠK∗(b− a)∥2)

= ∥b−ΠK∗(b− a)∥2 − 1

α
∥b−ΠK∗(b− a)∥2

= (1− 1

α
)∥b−ΠK∗(b− a)∥2,

which, together with (20), implies that ψα(a, b) ≥ (1 − 1
α )∥b − ΠK∗(b − a)∥2.

Similarly, we can prove that ψ 1
α
(a, b) ≥ (1−α)∥b−ΠK∗(b−a)∥2, i.e., −ψ 1

α
(a, b) ≤

(α− 1)∥b−ΠK∗(b− a)∥2. Therefore, the relation (17) holds.
We are ready to prove that the remainder conclusion of item (i). Suppose

that a ∈ K2, b ∈ K∗ and ⟨a, b⟩ = 0. Then, from Lemma 3.1, we know that
b = ΠK∗(b− a). This, together with (17), shows that ψα(a, b) = 0.

Conversely, suppose that ψα(a, b) = 0 holds for any α ∈ (1,∞). Then, from
(17), we obtain that ∥b− ΠK∗(b− a)∥2 = 0, which means that b = ΠK∗(b− a).
It follows from Lemma 3.1 that a ∈ K2, b ∈ K∗ and ⟨a, b⟩ = 0.

(ii) follows from Lemma 2.2 (i). This completes the proof. �

Next we define the projection residual function Sα : Ω → Ω for any α ∈ (0,∞)
by

Sα(x) = F (x)−ΠK2(F (x)− αG(x)).

According to Lemma 6.1, we obtain the following theorem which estimates
the growth rate of fα in terms of ∥R1∥, and give formulas for ∇fα and a certain
descent direction for fα at any nonglobal minimum x with ∇G(x) invertible and
∇G(x)−1F (x) satisfying (16).
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Theorem 6.2. Fix any α ∈ (1,∞) and let fα : Ω → ℜ be given by (6). Then
the following hold:

(i): For all x ∈ Ω, we have

(α− 1)∥R1(x)∥2 ≥ fα(x) = −f 1
α
(x) ≥ (1− 1

α
)∥R1(x)∥2

and fα(x) = 0 if and only if x satisfies (2).
(ii): If F is differentiable on Ω, Then, so is fα and

∇fα(x) = ∇F (x)(Rα(x)−
1

α
Sα(x)) +∇G(x)(Sα(x)−

1

α
Rα(x))

for all x ∈ Ω.
(iii): Assume that F and G are differentiable on Ω. Then, for every x ∈

Ω where ∇G(x) is invertible and ∇G(x)−1∇F (x) satisfies (16), either
fα(x) = 0 or ∇fα(x) ̸= 0
with ⟨d(x),∇fα(x)⟩ ≤ −⟨d(x),∇G(x)−1∇F (x)d(x)⟩, where

d(x) = −(∇G(x)−1)∗(Rα(x)−
1

α
Sα(x))

and (G(x)−1)∗ is the adjoint operator of G(x)−1.

Proof. (i) and (ii) follow from Lemma 6.1.
(iii) Fix any x ∈ Ω with ∇G(x) invertible and ∇G(x)−1∇F (x) satisfying (16).
For simplicity, we omit (x) below. By the definition of Rα and Sα, we have that

Rα − 1

α
Sα = G−ΠK∗(G− αF )− 1

α
(F −ΠK2(F − αG))

= −ΠK∗(G− αF )− 1

α
[F − αG−ΠK2(F − αG)],

Sα − 1

α
Rα = F −ΠK2(F − αG)− 1

α
(G−ΠK∗(G− αF ))

= −ΠK2(F − αG)− 1

α
[G− αF −ΠK∗(G− αF )].

It is easy to see that

⟨Rα − 1

α
Sα, Sα − 1

α
Rα⟩ ≥ 0.

Consequently, we obtain that

⟨d,∇fα⟩ = −⟨Rα − 1

α
Sα,∇G−1∇F (Rα − 1

α
Sα) + Sα − 1

α
Rα⟩

≤ −⟨Rα − 1

α
Sα,∇G−1∇F (Rα − 1

α
Sα)⟩

= −⟨d,∇G−1∇Fd⟩.

If ∇fα(x) = 0, then d(x) = 0, which means that Rα − 1
αSα = 0. Thus, from

(ii) and the nonsingularity of ∇G(x), we conclude that Sα − 1
αRα = 0. Since

α ̸= 1, the latter two equations would yield Rα(x) = Sα(x) = 0, which shows
that fα(x) = 0. This completes the proof. �
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7. A Function of Luo and Tseng

In this section, we study the merit function f given by (8) with ψ0 satisfying
ψ0(t) = 0 if and only if t ≤ 0 and ψ satisfying (9). In the subsequent analysis,
we will further restrict the choice of ψ. Let ψ+ denote the collection of ψ :
H×H → [0,∞) satisfying (9) that are differentiable and satisfying the following
conditions:

⟨∇aψ(a, b),∇bψ(a, b)⟩ ≥ 0, ⟨a,∇aψ(a, b)⟩+ ⟨b,∇bψ(a, b)⟩ ≥ 0, ∀ a, b ∈ H. (21)

The theorem below provides one choice of ψ belong to ψ+. Moreover, the choice
of ψ is convex.

Theorem 7.1. Let ψ : H×H → [0,∞) be given by

ψ(a, b) :=
1

2
(∥Π−K∗(a)∥

2 + ∥Π−K2
(b)∥2). (22)

Then the following hold:

(i): ψ satisfies (9).
(ii): ψ is convex and differentiable at every a, b ∈ H with ∇aψ(a, b) =

Π−K∗(a) and ∇bψ(a, b) = Π−K2
(b).

(iii): For every a, b ∈ H, we have ⟨∇aψ(a, b),∇bψ(a, b)⟩ ≥ 0.
(iv): For every a, b ∈ H, we have ⟨a,∇aψ(a, b)⟩+ ⟨b,∇bψ(a, b)⟩

= ∥Π−K∗(a)∥2 + ∥Π−K2
(b)∥2.

Proof. (i) and (ii). By Lemma 2.3, we have a = ΠK2(a) + Π−K∗(a) for a ∈ H.
Hence, the following holds:

∥Π−K∗(a)∥
2 = ∥a−ΠK2(a)∥2 = min

w∈K2

∥a− w∥2. (23)

It follows from Lemma 2.2 that ∥Π−K∗(a)∥2 is differentiable and convex in a and
∇aψ(a, b) = a− ΠK2(a) = Π−K∗(a). From (23), we know that ∥Π−K∗(a)∥2 = 0
if and only if a ∈ K2. Similarly, we can prove that b ∈ K∗ and ∇bψ(a, b) =
Π−K2

(b). Hence, ψ(a, b) is differentiable convex in (a, b) and equals 0 if and only
if a ∈ K2 and b ∈ K∗. Since a ∈ K2 and b ∈ K∗ implies that ⟨a, b⟩ ≥ 0, it follows
that (9) holds.

(iii) and (iv). By (ii) and Lemma 2.3, we have

⟨∇aψ(a, b),∇bψ(a, b)⟩ = ⟨Π−K∗(a),Π−K2
(b)⟩ = ⟨ΠK2(−a),ΠK∗(−b)⟩ ≥ 0.

Also, we have

⟨a,∇aψ(a, b)⟩ = ⟨a,Π−K∗(a)⟩ = ⟨ΠK2(a) + Π−K∗(a),Π−K∗(a)⟩ = ∥Π−K∗(a)∥
2.

Similarly, we can show that ⟨b,∇bψ(a, b)⟩ = ∥Π−K2
(b)∥2. This completes the

proof. �

Next, we consider a further restriction on ψ. Let ψ++ denote the collection
of ψ ∈ ψ+ satisfying the following condition:

ψ(a, b) = 0 ∀ a, b ∈ H with ⟨∇aψ(a, b),∇bψ(a, b)⟩ = 0. (24)
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The following theorem shows that f defined by (8) and (9) is a merit function
on H, and gives formulas for ∇f . In the following, we assume that ψ ∈ ψ+

and a certain descent direction for f at any non global minimum x with ∇G(x)
invertible and ∇G(x)−1∇F (x) satisfying (16). Furthermore, we suppose that
ψ ∈ ψ++ and a certain descent direction for f at any non global minimum x
with ∇G(x) invertible and ∇G(x)−1∇F (x) satisfying the following

⟨a,∇G(x)−1∇F (x)a⟩ ≥ 0 (25)

for all a ∈ H.

Theorem 7.2. Let f : H → ℜ be given by (8) with ψ0 : ℜ → [0,∞) satisfying
ψ0(t) = 0 if and only if t ≤ 0 and ψ : H×H → [0,∞) satisfying (9). Then the
following hold:

(i): For all x ∈ Ω, we have f(x) ≥ 0 and f(x) = 0 if and only if x satisfies
(2).

(ii): If ψ0, ψ and F,G are differentiable, then so is f and

∇f(x) = ∇ψ0(⟨F (x), G(x)⟩)(∇F (x)G(x) +∇G(x)F (x))
+∇F (x)∇aψ(F (x), G(x)) +∇G(x)∇bψ(F (x), G(x))

for all x ∈ Ω.
(iii): If ψ0, ψ are convex and F and G are affine and relatively monotone,

then f is convex.
(iv): Assume that F and G are differentiable on Ω and ψ ∈ ψ+ (respec-

tively, ψ++) and ψ0 is differentiable and strictly increasing on [0,∞).
Then for every x ∈ Ω where ∇G(x) is invertible and ∇G(x)−1∇F (x)
satisfies (16)(respectively, (25)), either f(x) = 0 or ∇f(x) ̸= 0 with
⟨d(x),∇f(x)⟩ < 0, where

d(x) := −(∇G(x)−1)∗(∇ψ0(⟨F (x), G(x)⟩)G(x) +∇aψ(F (x), G(x)))

and (G(x)−1)∗ is the adjoint operator of G(x)−1.

Proof. (i) follows from (8) and the assumptions on ψ0, ψ. (ii) follows from the
chain rule. (iii) follows from the observations that, under the given hypothesis,x→
⟨F (x), G(x)⟩ is convex (see the proof of Theorem 4.1 (ii)) and ψ0 is convex and
nondecreasing, so their composition is convex. Also, x→ (F (x), G(x)) with the
convex function ψ, is convex.

(iv) Consider the case ψ ∈ ψ++ and fix any x ∈ H with ∇G(x) invertible and
∇G(x)−1∇F (x) satisfying (25). Let β := ∇ψ0(⟨F (x), G(x)⟩). For simplicity, we
drop (x) in the following.

⟨d,∇f⟩ = −⟨βG+∇αψ(F,G),∇G−1∇F (βG+∇aψ(F,G)) + βF +∇bψ(F,G)⟩
≤ −⟨βG+∇aψ(F,G), βF +∇bψ(F,G)⟩

= −β2⟨F,G⟩ − β(⟨G,∇bψ(F,G)⟩+ ⟨F,∇aψ(F,G)⟩)− ⟨∇aψ(F,G),∇bψ(F,G)⟩

≤ −β2⟨F,G⟩ − ⟨∇aψ(F,G),∇bψ(F,G)⟩,



810 Li Wang, Yong-Jin Liu and Yong Jiang

where the last inequality follows from β ≥ 0 and (21). Since ψ0 is strictly in-
creasing on [0,∞), t∇ψ0(t) > 0 if and only if t > 0. Hence −β2⟨F,G⟩ ≤ 0
and β2⟨F,G⟩ = 0 only if ⟨F,G⟩ ≤ 0. From (21) and (24), we know that
−⟨∇aψ(F,G),∇bψ(F,G)⟩ ≤ 0 and ⟨∇aψ(F,G),∇bψ(F,G)⟩ = 0 only if ψ(F,G) =
0. Thus, ⟨d(x),∇f(x)⟩ < 0 unless ⟨F (x), G(x)⟩ = 0, which implies x satisfies (2)
or f(x) = 0. The case of ψ ∈ ψ+ and ∇G(x)−1∇F (x) satisfying (16) goes in a
similar fashion. This completes the proof. �

8. Conclusions

In this paper, we have discussed the merit functions such as the projection
residual function, the gap function, the regularized gap function, the implicit
Lagrangian function and the function of Luo and Tseng for solving MCCP. For
each of the above five choices of merit functions, we have derived conditions for
the merit function to be convex and/or differentiable, and for the stationary
point of the merit function to be a solution of MCCP. These results pave the
way for the task of using the optimization methods based on merit functions
to solve MCCP. Our next step is to carry out implementations and empirical
comparison of the algorithms based on the above five choices.
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18. L.C. Kong, L. Tunçel and N.H. Xiu, Vector-valued implicit Lagrangian for symmetric

cone complementarity problems, Asia-Pacific Journal of Operational Research, 26 (2009),
199-233.
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