• 제목/요약/키워드: Competing Risks

검색결과 46건 처리시간 0.033초

경쟁적 위험하에서의 회귀분석 (Competing Risks Regression Analysis)

  • 백재욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권2호
    • /
    • pp.130-142
    • /
    • 2018
  • Purpose: The purpose of this study is to introduce regression method in the presence of competing risks and to show how you can use the method with hypothetical data. Methods: Survival analysis has been widely used in biostatistics division. But the same method has not been utilized in reliability division. Especially competing risks, where more than a couple of causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not utilized in the area of reliability or they are analysed in the wrong way. Specifically Kaplan-Meier method is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced. In addition, sample competing risks data are analysed using cumulative incidence function along with some graphs. Lastly we compare cumulative incidence functions with regression type analysis briefly. Results: We used cumulative incidence function to calculate the survival probability or failure probability in the presence of competing risks. We also drew some useful graphs depicting the failure trend over the lifetime. Conclusion: This research shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime in the presence of competing risks. Cumulative incidence function is shown to be useful in stead. Some graphs using the cumulative incidence functions are also shown to be informative.

경쟁적 위험하에서의 신뢰성 분석 (Reliability Analysis under the Competing Risks)

  • 백재욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

Multiple imputation for competing risks survival data via pseudo-observations

  • Han, Seungbong;Andrei, Adin-Cristian;Tsui, Kam-Wah
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.385-396
    • /
    • 2018
  • Competing risks are commonly encountered in biomedical research. Regression models for competing risks data can be developed based on data routinely collected in hospitals or general practices. However, these data sets usually contain the covariate missing values. To overcome this problem, multiple imputation is often used to fit regression models under a MAR assumption. Here, we introduce a multivariate imputation in a chained equations algorithm to deal with competing risks survival data. Using pseudo-observations, we make use of the available outcome information by accommodating the competing risk structure. Lastly, we illustrate the practical advantages of our approach using simulations and two data examples from a coronary artery disease data and hepatocellular carcinoma data.

Bayes estimation of entropy of exponential distribution based on multiply Type II censored competing risks data

  • Lee, Kyeongjun;Cho, Youngseuk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1573-1582
    • /
    • 2015
  • In lifetime data analysis, it is generally known that the lifetimes of test items may not be recorded exactly. There are also situations wherein the withdrawal of items prior to failure is prearranged in order to decrease the time or cost associated with experience. Moreover, it is generally known that more than one cause or risk factor may be present at the same time. Therefore, analysis of censored competing risks data are needed. In this article, we derive the Bayes estimators for the entropy function under the exponential distribution with an unknown scale parameter based on multiply Type II censored competing risks data. The Bayes estimators of entropy function for the exponential distribution with multiply Type II censored competing risks data under the squared error loss function (SELF), precautionary loss function (PLF) and DeGroot loss function (DLF) are provided. Lindley's approximate method is used to compute these estimators.We compare the proposed Bayes estimators in the sense of the mean squared error (MSE) for various multiply Type II censored competing risks data. Finally, a real data set has been analyzed for illustrative purposes.

경쟁 위험 회귀 모형의 이해와 추정 방법 (Estimation methods and interpretation of competing risk regression models)

  • 김미정
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1231-1246
    • /
    • 2016
  • 경쟁위험에 대한 연구 중 주로 쓰이는 방법은 Cause-specific 위험 모형과 subdistribution을 이용한 비례 위험 모형 방법이다. 그 이후에도 많은 모형이 제시되었지만, 추정 방법 면에서 설명력이 부족하거나 알고리즘으로 구현하기 어려운 단점을 가지고 있어서 잘 활용되고 있지 않다. 이 논문에서는 Cause-specific 위험 모형, subdistribution을 이용한 비례 위험 모형과 비교적 최근에 제시된 이항 회귀 모형(direct binomial model), 절대 위험 회귀 모형(absolute risk regression model), Eriksson 등 (2015)의 비례 오즈 모형(proportional odds model)을 소개하고 추정 방법을 간단히 설명하고자 한다. 각 모형에 대하여 SAS와 R을 이용한 활용 방법을 제시하고, 두 가지 경쟁위험이 존재하는 데이터를 R을 이용하여 분석하였다.

경쟁위험 생존자료에 대한 결합 프레일티모형 (A Joint Frailty Model for Competing Risks Survival Data)

  • 하일도;조건호
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1209-1216
    • /
    • 2015
  • 경쟁위험사건들은 다기관 임상시험과 같은 군집화된 임상연구에서 자주 관측되어진다. 본 논문에서는 하나의 군집으로 부터 얻어지는 경쟁위험 생존자료에 대해 공통 프레일티를 허락하는 결합 프레일티모형 접근법을 제안한다. 추론을 위해 어려운 적분 자체를 피하는 다단계 가능도를 사용하여, 대응하는 추론절차를 유도한다. 또한 실제자료 분석을 통해 제안된 방법을 예증한다.

Survival of Colorectal Cancer in the Presence of Competing-Risks - Modeling by Weibull Distribution

  • Baghestani, Ahmad Reza;Daneshvar, Tahoura;Pourhoseingholi, Mohamad Amin;Asadzadeh, Hamid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1193-1196
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is the commonest malignancy in the lower gastrointestinal tract in both men and women. It is the third leading cause of cancer-dependent death in the world. In Iran the incidence of colorectal cancer has increased during the last 25 years. Materials and Methods: In this article we analyzed the survival of 447 colorectal patients of Taleghani hospital in Tehran using parametric competing-risks models. The cancers of these patients were diagnosed during 1985 - 2012 and followed up to 2013. The purpose was to assess the association between survival of patients with colorectal cancer in the presence of competing-risks and prognostic factors using parametric models. The analysis was carried out using R software version 3.0.2. Results: The prognostic variables included in the model were age at diagnosis, tumour site, body mass index and sex. The effect of age at diagnosis and body mass index on survival time was statistically significant. The median survival for Iranian patients with colorectal cancer is about 20 years. Conclusions: Survival function based on Weibull model compared with Kaplan-Meier survival function is smooth. Iranian data suggest a younger age distribution compared to Western reports for CRC.

다중 동적 Competing Risks 모형을 갖는 이변량 신뢰성 모형에 관한 연구 (Bivariate reliability models with multiple dynamic competing risks)

  • 김주영;차지환
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.711-724
    • /
    • 2016
  • 다양하게 변화하는 복잡한 생존환경 하에서는 여러 요인이 동시에 사람이나 시스템의 수명에 영향을 줄 수 있다. 본 연구에서는 여러 요인이 동시에 수명에 영향을 주면서, 영향력의 크기가 상황에 따라 동적으로 변화하는 신뢰성 모형에 관한 연구를 수행한다. 수명에 영향을 주는 요인으로, 자연적 고장과 더불어, 하나의 개체의 사망이나 고장으로 인한 잔여 개체에 대한 스트레스 증가, 외부 충격, 그리고 생존 환경 스트레스 수준을 동시에 고려한다. 이들 요인들을 모두 포함하는 두 가지 모델을 고려하고, 이변량 수명 분포를 유도한다. 또한 이들 두 모형을 서로 비교하며, 이들 모형으로부터 얻어지는 최대값의 분포와 최소값의 분포를 비교하고자 한다. 제안된 두 가지 신뢰성 모형에서의 최대값 분포와 최소값 분포의 비교를 위하여 확률적 순서화에 관한 개념을 소개하며, 이에 기초하여 최대값 분포와 최소값 분포에 대한 확률적 비교를 수행한다.

Regression analysis of interval censored competing risk data using a pseudo-value approach

  • Kim, Sooyeon;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제23권6호
    • /
    • pp.555-562
    • /
    • 2016
  • Interval censored data often occur in an observational study where the subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are available. There are several methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks, few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value approach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the estimated cumulative incidence function then become response variables in a generalized estimating equation. Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort study is analyzed as a real data example.

의료, 보건, 역학 분야에서 생산되는 준경쟁적 위험자료를 분석하기 위한 통계적 모형의 개발과 임상분석시스템 구축을 위한 연구 (Developing statistical models and constructing clinical systems for analyzing semi-competing risks data produced from medicine, public heath, and epidemiology)

  • 김진흠
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.379-393
    • /
    • 2020
  • 사망과 같은 종말 사건은 중간 사건을 중도절단 시킬 수 있지만 재발과 같은 중간 사건은 종말 사건을 중도절단 시킬 수 없는 자료를 준경쟁위험 자료라고 하는데 의학 및 보건, 역학 분야에서는 이와 같은 자료를 자주 접하게 된다. 본 논문에서는 질병-사망 모형에 포함된 세 가지 전이 시간이 모두 구간중도절단된 준경쟁위험 자료를 분석하기 위해 정규 프레일티를 가진 와이블 회귀모형을 제안하였다. 각 개체는 중간 사건과 종말 사건의 발생 여부에 따라 다섯 가지 유형으로 구분되는데 유형별로 조건부 우도함수를 유도하였다. 조정중요표본추출법을 써서 주변 우도함수를 유도한 후 반복의사뉴톤 알고리즘을 써서 최적 추정량을 얻었다. 제안한 추정 방법의 소표본 성질을 살펴보기 위해 모의실험을 수행하였으며 또한 제안한 추정 방법을 Personnes Agées Quid (PAQUID) 자료에 적용하였다.