• Title/Summary/Keyword: Compartment models

Search Result 64, Processing Time 0.027 seconds

Gasdynamics of rapid and explosive decompressions of pressurized aircraft including active venting

  • Pagani, Alfonso;Carrer, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.77-93
    • /
    • 2016
  • In this paper, a zero-dimensional mathematical formulation for rapid and explosive decompression analyses of pressurized aircraft is developed. Air flows between two compartments and between the damaged compartment and external ambient are modeled by assuming an adiabatic, reversible transformation. Both supercritical and subcritical decompressions are considered, and the attention focuses on intercompartment venting systems. In particular, passive and active vents are addressed, and mathematical models of both swinging and translational blowout panels are provided. A numerical procedure based on an explicit Euler integration scheme is also discussed for multi-compartment aircraft analysis. Various numerical solutions are presented, which highlight the importance of considering the opening dynamics of blowout panels. The comparisons with the results from the literature demonstrate the validity of the proposed methodology, which can be also applied, with no lack of accuracy, to the decompression analysis of spacecraft.

SIRV Q train models for the first outbreak of the Omicron variant in Korea

  • PARK Jewon;KIM Young Rock
    • Journal for History of Mathematics
    • /
    • v.36 no.6
    • /
    • pp.105-113
    • /
    • 2023
  • We will suggest a train model to explain the weekly periodic character of Covid19 in South Korea on the first half of 2022, the period of the Omicron variant outbreak. In the model, the daily new infected individuals board a train, divided into 4 compartments. The train moves at night by the length of one compartment. Then the infected are quarantined during the daytime after their compartment reaches the quarantine area. Then it remains empty on the 5-th night after boarding. The parameters of the model are fitted with the daily measured quarantine populations and generate the simulated quarantine populations that hit the real weekly and global peaks.

APPLICATION OF FIRE RESEARCH TO BUILDING FIRE SAFETY DESIGN - CURRENT BENEFITS AND FUTURE NEEDS

  • Bressington, Peter;Johnson, Peter
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.392-403
    • /
    • 1997
  • There is a strong international move towards performance based fire regulations for buildings with New Zealand and Australia at the forefront of research in this fold. The reform of regulations is thought to offer more innovation and flexibility in building design and greater cost effectiveness in construction. An important part of the research in this area is related to the development of agreed approaches to fire safety design, such as the Fire Code Reform Centre's "Fire Engineering Guidelines" or New Zealand's "Fire Engineering Design Guide". Such design process documents have incorporated or referenced much of the latest research in areas such as: tenability criteria fire compartment models egress models risk assessment. Use of such design guidelines or equivalents in major projects in countries such as Hong Kong and Australia have highlighted where fro engineering can offer real benefits to building designers and ultimately building owners and operators. However, there is still much research to be done and use of a systematic, logical design approach clearly identifies where design data or modelling techniques are still urgently required. Such areas are: fire growth rates and peak heat release rates for non-residential occupancies pre-movement times related to egress experimental validation and limits of applicability of CFD and other compartment Ire models probability/reliability data on fire protection systems for risk based analysis. Examples from case studies will be shown where lack of such research and poor judgement can lead to inferior design solutions or where unnecessarily conservative designs can lead to cost excesses. In summary, the link between Ire engineering designers and the research community is very important to highlight areas of fire research that will have the most benefit to the building and construction industry.nstruction industry.

  • PDF

Simplified Approximation Method of the Multi-Compartments Model on the Migration of Contaminant through Unsaturated Zone (불포화대에서 오염물질 이동현상에 대한 다중구획 모델의 단순 근사방법)

  • Cheong, Jae-Hak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • A conventional single compartment model cannot simulate reasonably the migration phenomenon of contaminants through unsaturated zone, due to the intrinsic unrealistic assumption of the compartment model that contaminants entering a compartment are immediately and uniformly mixed. Although, a multi-compartments model, in which even physically identical layer is divided into multiple compartments, may be used for explaining the retardation of contaminant mass flux along with increasing number of compartments, its numerical modeling is usually time-consuming and appropriate analytical solutions have not been reported yet. In order to improve the conventional compartment models on contaminant migration through unsaturated zone, a series of analytical solutions for multi-compartments model were derived and a generalized constraint under which the results from multi-compartments model can be simply approximated by single compartment model was proposed. The simplified approximation method was verified by a simple numerical analysis on the constraint under hypothetical conditions. It was also proved that the influent contaminant transfer rate from the bulk unsaturated zone can be generally represented into a time-dependent nominal transfer rate rather than a constant. In addition, the nominal transfer rate turned out to be very sensitive to the contaminant transfer rate between compartments in unsaturated zone, but to be almost insensitive to the transfer rate from contaminated zone. It is expected that the simplified approximation method developed in this study can be used for rapid and reasonable estimation of the migration phenomenon of contaminant through unsaturated zone, instead of time-consuming multi-compartments modeling.

  • PDF

Safety Assessment for LILW Near-Surface Disposal Facility Using the IAEA Reference Model and MASCOT Program (IAEA의 기준모델과 MASCOT 프로그램을 이용한 중저준위방사성폐기물 천층처분시설 안전성평가)

  • Kim, Hyun-Joo;Park, Joo-Wan;Kim, Chang-Lak
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • A reference scenario of vault safety case prepared by the IAEA for the near-surface disposal facility of low-and informed]ate-level radioactive wastes is assessed with the MASCOT program. The appropriate conceptual models for the MASCOT implementation is developed. An assessment of groundwater pathway through a drinking well as a geosphere-biosphere interface is performed first. then biosphere pathway is analysed to estimate the radiological consequences of the disposed radionuclides based on compartment modeling approach. The validity of conceptual modeling for the reference scenario is investigated where possible comparing to the results generated by the other assessment. The result of this study shows that the typical conceptual model for groundwater pathway represented by the compartment model ran be satisfactorily used for safety assessment of the entire disposal system in a cons]stent way. It is also shown that safety assessment of a disposal facility considering complex and various pathways would be possible by the MASCOT program.

The Effect of Obstacles in a Compartment on Personnel Injury Caused by Blast (격실 내 장애물이 폭압에 의한 인원 피해에 미치는 영향)

  • Park, Sung-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • Blast injuries in a compartment are investigated, and the effects of obstacles on blast injury are particularly analyzed by comparing injuries in the compartments with or without protruding obstacles inside. Even if blast pressure profile tends to be complicated in a confined space unlike in open field, it can be obtained in a relatively short time by using some empirical fast running models for simple confined spaces. However, a finite element method should be employed to obtain blast pressure profiles in a case with obstacles in confined spaces, because the obstacles heavily disturb blast waves. On the other hand, Axelsson SDOF(Single degree of freedom) model and ASII(Adjusted severity of injury index) injury level are employed to estimate blast injury in compartments, because the usual pressure-impulse injury criterion based on the ideal Friedlander waves in open the field cannot be applied to personnel in a confined space due to complexity of blast waves inside. In cases with obstacles, chest wall velocity was reduced by 26 to 76 percent(%) and the personnel injury in the compartment caused by blast was also reduced.

Application of the new ICRP iodine biokinetic model for internal dosimetry in case of thyroid blocking

  • Kwon, Tae-Eun;Chung, Yoonsun;Ha, Wi-Ho;Jin, Young Woo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1826-1833
    • /
    • 2020
  • Administration of stable iodine has been considered a best measure to protect the thyroid from internal irradiation by radioiodine intake, and its efficacy on thyroid protection has been quantitatively evaluated in several simulation studies on the basis of simple iodine biokinetic models (i.e., three-compartment model). However, the new iodine biokinetic model adopted by the International Commission on Radiological Protection interprets and expresses the thyroid blocking phenomenon differently. Therefore, in this study, the new model was analyzed in terms of thyroid blocking and implemented to reassess the protective effects and to produce dosimetric data. The biokinetic model calculation was performed using computation modules developed by authors, and the results were compared with those of experimental data and prior simulation studies. The new model predicted protective effects that were generally consistent with those of experimental data, except for those in the range of stable iodine administration -72 h before radioiodine exposure. Additionally, the dosimetric data calculated in this study demonstrates a critical limitation of the three-compartment model in predicting bioassay functions, and indicated that dose assessment 1 d after exposure would result in a similar dose estimate irrespective of the administration time of stable iodine.

KSLV-1 1st stage Rear Fuselage Upper Compartment Detail Design (KSLV-1 1단 후방동체 상부 조합체 상세설계)

  • Yoo, Jae-Seok;Jeong, Ho-Kyeong;Jang, Soon-Young
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.117-131
    • /
    • 2009
  • In this study, a detail design was conducted for KSLV-1 1st stage Rear Fuselage Upper Compartment assembly. A basic structural sizing was done by the aircraft fuselage sizing in-house program. The frame structural design and the interface check were conducted by the FE and the CAD program. The structural margin of safety was conformed by FE analysis for the normal section model and duct cut-out section models which are the weakest parts of the rear fuselage. The shear stress analysis was performed for a fastener design of the skin-stringer which is most affected by the shear stress induced by the shear load.

  • PDF

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Correlation of Peak Time Shift in Blood Pressure Waveform and PPG Based on Compliance Change Analysis in RLC Windkessel Model

  • Choi, Wonsuk;Cho, Jin-Ho
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • We explored how changes in blood vessel compliance affected the systolic rise time (SRT) of the maximum blood pressure (BP) peak wave and the diastolic fall time (DFT) of the minimal BP peak wave, compared to photoplethysmograpic (PPG) parameters, using a two-compartment, second-order, arterial Windkessel model. We employed earlier two-compartment Windkessel models and the components thereof to construct equivalent blood vessel circuits, and reproduced BP waveforms using PSpice technology. The SRT and DFT values were obtained via circuit simulation, considering variations in compliance (the dominant influence on blood vessel parameters attributable to BP changes). And then performed regression analysis to identify how compliance affected the SRT and DFT. We compared the SRTs and DFTs of BP waves to the PPG values by reference to BP changes in each subject. We confirmed that the time-shift propensities of BP waves and the PPG data were highly consistent. However, the time shifts differed significantly among subjects. These simulation and experimental results allowed us to construct an initial trend curve of individual BP peak time (measured via wrist PPG evaluations at three arm positions) that facilitated accurate individual BP estimations.