• 제목/요약/키워드: Compartment Model

검색결과 315건 처리시간 0.022초

유기 음이온계 약물의 간내 이행과정에 있어서 Cytoskeleton의 역할에 관한 속도론적 연구 (Kinetic Analysis of the Hepatic Transport of Organic Anions: Role of Intracellular Cytoskeleton)

  • 정연복;한건;육동연
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권1호
    • /
    • pp.11-21
    • /
    • 1992
  • The effects of colchicine on the plasma elimination and biliary excretion of various organic anions in rats were examined. Elimination of indocyanine green (ICG) or rose bengal (RB) from plasma was significantly delayed when rats were treated with colchicine (3 mg/kg body weight) 3 hr prior to the administration of the dye. On the other hand, disappearance of sulfobromophthalein (BSP) or bromophenol blue (BPB) from plasma was not influenced by colchicine. The plasma disappearance and biliary excretion of organic anions were kinetically analyzed based on a compartment model, in which the deep compartment and the unknown disposition are incorporated. The transfer rate constants of ICG or RB, $k_{23}$ (from the liver to the deep compartment) and $k_{3B}$ (from the deep compartment to the bile), were decreased by colchicine, but those of BSP or BPB were not changed. A mechanism for the decrease in the $k_{23}$ and $k_{3B}$ values for ICG and RB might be explained by a inhibition of colchicine to the intracellular cytoskeleton. The hepatocellular distribution of RB or BPB was then determined. BPB mainly distributed to the cytosolic fraction, but RB distributed to each hepatocyte organelle. Taken together. it was suggested that ICG or RB is transported through hepatocytes into bile with the aid of the cytoskeleton, whereas BSP or BPB is handled by hepatocytes in a different way.

  • PDF

CFAST를 이용한 구획실 가스화재의 디자인 화재곡선 평가 (Evaluation of Design Fire Curves for Gas Fires in a Compartment Using CFAST)

  • 백빛나;오창보;황철홍
    • 한국화재소방학회논문지
    • /
    • 제32권4호
    • /
    • pp.7-16
    • /
    • 2018
  • 본 연구에서는 CFAST를 이용하여 구획실 가스연료 화재실험에 대한 디자인 화재곡선(Design fire curves, DF)의 예측성능을 평가하였다. 평가된 디자인 화재곡선은 이전의 연구에서 제안된 2-stage DF, Ingason이 제안한 Quadratic DF와 Exponential DF이며, 예측성능 평가를 위해 각 디자인 화재곡선을 CFAST의 입력조건으로 하여 시뮬레이션을 수행하였다. 시뮬레이션결과와 실험결과의 비교를 통해 구획실 내부의 공간평균온도와 $O_2$, $CO_2$ 농도에 대해 전반적으로 2-stage DF > Quadratic DF > Exponential DF 순으로 실험결과를 합리적으로 예측하는 것을 확인하였다. CFAST 시뮬레이션 결과를 통해서도 실험에서 보이는 구획실 내 개구부측과 내측에서의 온도와 $O_2$$CO_2$ 농도 차이를 예측할 수 없음을 명확히 확인하였다. 또한 CFAST는 구획실 가스연료 화재의 CO 농도와 하층부의 공간평균온도에 대한 예측에 한계가 있음을 확인하였다.

구획실 내 가스연료 화재의 CO 농도에 대한 FDS 연소모델의 예측성능 평가 (Evaluation of the Prediction Performance of FDS Combustion Models for the CO Concentration of Gas Fires in a Compartment)

  • 백빛나;오창보;황철홍;윤홍석
    • 한국화재소방학회논문지
    • /
    • 제32권1호
    • /
    • pp.7-15
    • /
    • 2018
  • 구획실 내 프로판 가스화재에 대해 Fire Dynamics Simulator (FDS)를 이용한 수치계산을 수행하고 실험과의 비교를 통해 적용된 연소모델 예측성능을 평가하였다. 검토된 연소모델은 FDS v5.5.3의 혼합분율 연소모델과 FDS v6.6.3의 Eddy Dissipation Concept (EDC) 모델이며, EDC 모델에서 화학반응기구는 1-step Mixing Controlled, 2-step Mixing Controlled, 3-step Mixing Controlled 및 Mixing Controlled 반응과 유한화학반응이 혼합된 3-step Mixed 반응을 적용하였다. 구획실 내부의 온도에 대해서는 각 연소모델들 간의 예측성능 차이는 그다지 크지 않음을 확인하였다. 연소모델 차이에 의한 $O_2$$CO_2$ 농도에 대한 예측성능 차이보다는 CO에 대한 예측결과 차이가 크게 나타났다. CO 농도에 대해서는 EDC 3-step Mixing Controlled 모델이 가장 높게 예측하며 혼합분율 연소모델은 실험보다는 낮게 예측하였다. EDC 3-step Mixed 모델이 가장 예측성능이 좋았지만 EDC 2-step Mixing Controlled 모델도 충분히 합리적인 수준으로 예측하고 있음을 확인하였다. EDC 1-step Mixing Controlled 모델에 기존에 제안된 CO 수율을 적용할 경우 CO 농도에 대해서 너무 과소 예측하며 CO 예측 정확도를 높이기 위해 수율을 높이면 $CO_2$ 농도에 대한 합리적인 예측이 어려워지는 문제점이 있었다.

유기 음이온계 약물의 간수송과정에 있어서 대향수송현상에 관한 속도론적 연구 (Kinetic Analysis of the Counter-transport Phenomenon in the Hepatic Transport of Organic Anionic Drugs)

  • 정연복;한건;노정렬
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권4호
    • /
    • pp.289-300
    • /
    • 1992
  • The counter-transport phenomena in the hepatic transport of 1-anilino-8-naphthalene sulfonate (ANS) were kinetically investigated by analyzing the plasma disappearance-time profiles and the transport into the isolated hepatocytes. In vivo "counter transport phenomena" were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of counter-transport phenomenon. To examine the inhibitory effects on the initial uptake of a ligand by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. The initial plasma disappearance curves of ANS were then kinetically analyzed based on a two-compartment model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). No effects on the initial plasma disappearance rates of ANS were observed after preloading of bromophenol blue (BPB) or rose bengal (RB) in the liver. Inhibitory effect of BPB or RB on the initial uptake (or efflux) rates of ANS by the isolated hepatocytes were not observed, suggesting that the true counter transport mechanism is not working. In conclusion, checking the preloading effects of transstimulation on the initial uptake of a ligand by the liver could be a useful criterion for carrier cycling and common use of the same carrier between two ligands. However, one cannot exclude those possibilities even if the preloading effects cannot be observed.

  • PDF

FIRE PROPAGATION EQUATION FOR THE EXPLICIT IDENTIFICATION OF FIRE SCENARIOS IN A FIRE PSA

  • Lim, Ho-Gon;Han, Sang-Hoon;Moon, Joo-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.271-278
    • /
    • 2011
  • When performing fire PSA in a nuclear power plant, an event mapping method, using an internal event PSA model, is widely used to reduce the resources used by fire PSA model development. Feasible initiating events and component failure events due to fire are identified to transform the fault tree (FT) for an internal event PSA into one for a fire PSA using the event mapping method. A surrogate event or damage term method is used to condition the FT of the internal PSA. The surrogate event or the damage term plays the role of flagging whether the system/component in a fire compartment is damaged or not, depending on the fire being initiated from a specified compartment. These methods usually require explicit states of all compartments to be modeled in a fire area. Fire event scenarios, when using explicit identification, such as surrogate or damage terms, have two problems: (1) there is no consideration of multiple fire propagation beyond a single propagation to an adjacent compartment, and (2) there is no consideration of simultaneous fire propagations in which an initiating fire event is propagated to multiple paths simultaneously. The present paper suggests a fire propagation equation to identify all possible fire event scenarios for an explicitly treated fire event scenario in the fire PSA. Also, a method for separating fire events was developed to make all fire events a set of mutually exclusive events, which can facilitate arithmetic summation in fire risk quantification. A simple example is given to confirm the applicability of the present method for a $2{\times}3$ rectangular fire area. Also, a feasible asymptotic approach is discussed to reduce the computational burden for fire risk quantification.

격실 내 장애물이 폭압에 의한 인원 피해에 미치는 영향 (The Effect of Obstacles in a Compartment on Personnel Injury Caused by Blast)

  • 박성준
    • 한국시뮬레이션학회논문지
    • /
    • 제26권3호
    • /
    • pp.1-11
    • /
    • 2017
  • 격실 내부에서의 폭발로 인한 인원의 피해를 분석하였다. 특히 격실 내에서 폭압 전파에 영향을 미치는 돌출된 장애물의 유무에 따른 인원 피해를 비교하였다. 격실 내에 장애물이 없는 경우에 경험적 고속처리모델을 이용하여 폭압을 예측할 수 있다. 하지만 격실 내부에서는 폭압 프로파일이 개활지에서와 달리 복잡하며 의자와 같은 구조물이 존재하는 경우에는 경험적 고속처리모델 적용이 불가하다. 따라서 장애물이 있는 격실 내부 폭압은 유한요소해석을 이용해 획득하였다. 또한 개활지의 폭압 프로파일을 기준으로 개발된 Friedlander 압력-충격량 곡선을 격실 내부에서의 복잡한 폭압 전파로 인해 피해평가에 적용할 수 없어, Axelsson 단자유도 모델을 적용하여 인원 피해를 분석하였다. 장애물이 있는 경우 인원의 흉벽 속도는 26에서 76 퍼센트(%) 만큼 감소되었으며 격실내 인원피해 또한 감소되었다.

A predictive nomogram-based model for lower extremity compartment syndrome after trauma in the United States: a retrospective case-control study

  • Blake Callahan;Darwin Ang;Huazhi Liu
    • Journal of Trauma and Injury
    • /
    • 제37권2호
    • /
    • pp.124-131
    • /
    • 2024
  • Purpose: The aim of this study was to utilize the American College of Surgeons Trauma Quality Improvement Program (TQIP) database to identify risk factors associated with developing acute compartment syndrome (ACS) following lower extremity fractures. Specifically, a nomogram of variables was constructed in order to propose a risk calculator for ACS following lower extremity trauma. Methods: A large retrospective case-control study was conducted using the TQIP database to identify risk factors associated with developing ACS following lower extremity fractures. Multivariable regression was used to identify significant risk factors and subsequently, these variables were implemented in a nomogram to develop a predictive model for developing ACS. Results: Novel risk factors identified include venous thromboembolism prophylaxis type particularly unfractionated heparin (odds ratio [OR], 2.67; 95% confidence interval [CI], 2.33-3.05; P<0.001), blood product transfusions (blood per unit: OR 1.13 [95% CI, 1.09-1.18], P<0.001; platelets per unit: OR 1.16 [95% CI, 1.09-1.24], P<0.001; cryoprecipitate per unit: OR 1.13 [95% CI, 1.04-1.22], P=0.003). Conclusions: This study provides evidence to believe that heparin use and blood product transfusions may be additional risk factors to evaluate when considering methods of risk stratification of lower extremity ACS. We propose a risk calculator using previously elucidated risk factors, as well as the risk factors demonstrated in this study. Our nomogram-based risk calculator is a tool that will aid in screening for high-risk patients for ACS and help in clinical decision-making.

대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발 (Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck)

  • 오재윤;김학덕;송주현
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.

실험견에서 Metoprolol 약리효과의 약동/력학적 검토 (Pharmacokinetic/Pharmacodynamic Analysis of Metoprolol in Dogs)

  • 오동진;장인진;이경훈;임동석;김형기;신상구;박찬웅;신재국
    • 대한약리학회지
    • /
    • 제31권2호
    • /
    • pp.251-259
    • /
    • 1995
  • Pharmacokinetics and pharmacodynamics of metoprolol, a selective beta-l blocker, were examined for 360 minutes after intravenous bolus administration of metoprolol to 6 dogs. Plasma concentration and excreted amount in the urine metoprolol were measured by liquid chromatography with fluorescence detection. PR interval and heart rate were measured by ECG monitoring. Blood pressure was monitored through intraarterial catheter in femoral artery and cardiac output by thermodilution method using Swan-Ganz catheter. To analyze the effect site concentration-response relationship, plasma concentration and pharmacological effects were simultaneously fitted to a two pharmacokinetic compartment linked to pharmacodynamic model with NONLIN program. Results are as follows. 1) The plasma concentration of metoprolol after intrvenous injection decreased biexponentially. The terminal half-life estimated was $1.33{\pm}0.40$ hours and the volume of distribution at steady state (Vdss) and the total body clearance were $1.04{\pm}0.4\;L/kg,\;6.55{\pm}2.21\;L/hr$, respectively. The central compartment volume of distribution and peripheral compartment volume of distribution were $0.35{\pm}0.14L/kg\;and\;0.69{\pm}0.34L/kg$. The renal clearance and intercompartment clearance were $0.53{\pm}0.25\;L/min\;and\;0.35{\pm}0.19\;L/min$. 2) Simulated biophase concentration-response curve shows hyperbolic relationship and the estimated concentration-effect relationship was best explained by Emax model when the prolongation of PR interval and the reduction of the heart rate were used as pharmacodynamic parameters. Emax and EC50 were estimated to be $26.3{\pm}4.7\;msec\;and\;88.8{\pm}82.3\;g/ml$ for PR interval, and $48.7{\pm}18.8\;beats/min\;and\;113.5{\pm}78.7\;ng/ml$ for heart rate, respectively. 3) The changes of cardiac output-effect site concentration relationship was best fitted by a linear model and the slope of the relationship was $0.005{\pm}0.003$. Diastolic blood pressure-effect site concentration relationship was also explained by the linear model and the slope of the relationship was $0.038{\pm}0.034$.

  • PDF

워터미스트 작동에 의한 산소저공급 실내화재 특성 변화에 대한 수치해석 연구 (Numerical Study on the Change in Fire Characteristic as Operating Water-mist in Under-ventilated Compartments)

  • 고권현;이성혁;유홍선
    • 한국분무공학회지
    • /
    • 제13권3호
    • /
    • pp.156-161
    • /
    • 2008
  • The present article reports a numerical study on the fire characteristic change by water-mist in under-ventilated compartments. The natural gas and heptane pool fires are used as fire sources, which are located in the bottom center of the 2/5 reduced-scaled model of the ISO 9705 standard room. The fire modeling using the FDS (Fire Dynamics Simulator) is validated by comparison with previously published experimental results. For temperature and combustion gas concentrations at two positions located in the upper layer of compartment, the predicted results with and without water-mist are compared each other. The results show that under the water-mist operation, the predicted temperature and carbon monoxide concentration reduce as $300{\sim}400^{\circ}C$ and about 20%, respectively, compared to those without water-mist.

  • PDF