• Title/Summary/Keyword: Compaction pressure

Search Result 294, Processing Time 0.034 seconds

A Study on Densification Behvior of Austenitic Stainless Steel Powder Compacts Processed by Warm Compaction (온간 성형법으로 제작한 오스테나이트계 스테인레스강의 소결 거동에 관한 연구)

  • 임태환
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.42-49
    • /
    • 2000
  • Densificationbehavior of conventional austenitic stainless steel powder compacts was studied by comparing the relative density of sintered compact(Ds)with that of green compacts(Dg)prepared with various catbon contents and P/M process. Dg of 304and 316 powders by warm compaction under pressure of 686 MPa at heating temperature of powder(553K) and dies (573K) were 80% and 81%, repectively, whichwere 2 and 3% higher than those of conventional green compacts at the same pressure. Ds of 304 compacts sintered at 1373K in H2 gas has the same value of 84% max. regardless of compacting temperature, and Ds of 316 compacts at the same sintering conditions were 80% by conventional compaction and 83% by warm compaction. Oxygen contents of 304 and 316 sintered compacts were increased 1.43∼2.94% and 0.010∼0.921% higher than those of raw powders and warm green compacts, respectively. In other case, Ds of 316 compacts sintered at 1573K in vacuum had the same value of 86%max. And Ds of 316 compacts at the same sintering conditions were 83% and 86% by conventional and warm compaction, respectively. Oxygen contents of 304 sintered compacts were 0.321% and 0.360%, and in case of 316, they were 0.419% and 0.182% by the respective compating condition. With carbon additions in the range 0.1∼0.6% Ds increased to the extent of 86∼89% in 304 sintered compacts, and to 82∼84% and 85∼87% in 316 according to different two compacting peocesses compared to those of sintered compacts without carbon addition.

  • PDF

Dependence of Compaction Behavior of Spray-Dried Ferrite Powders on the Kinds and Concentrations of Binder Systems (결합제의 종류와 양에 따라 분무건조된 페라이트 분말의 성형특성)

  • 홍대영;변순천;제해준;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1047-1055
    • /
    • 1995
  • Mn-Zn ferrite granules were formed by a spray-drying method of the slurry containing different kinds and concentrations of binders at various temperatures. The slurry was made by conventional ceramic processing method, that is, by mixing Fe2O3, MnO, ZnO powders (52 : 24 : 24 mol%), calcining and milling. Typical shape of the spray dried granules was spherical. The compaction behavior of these granules was dependent on the spray-drying temperature and the kind and concentration of binders. At lower pressure the granules were displaced and at higher pressure the granules were deformed and fractured to fill pores among the granules. The optimum concentration of the binder was 0.5wt%. The granules containing 0.5wt% PVA 205 were deformed and fractured well and the green density was higher than others. At higher concentrations of the binder the granules were deformed rather than fractured, therefore the green density was lowered because of the remaining unfilled pores. The decomposition temperature and the heat released were increased with increasing the concentration of the binders. The compaction response of the granules containing PVA 205 was more efficient than those containing PVA 217 and PVA 117. Green density was not dependent on the degree of hydrolysis of the binders. The compaction response of the granules spray-dried at 15$0^{\circ}C$ was most efficient.

  • PDF

Study on the Optimization of Powder Compaction Process Parameters (분말 가압 성형 공정 변수 최적화에 관한 연구)

  • Kim J. L.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.476-479
    • /
    • 2005
  • In this study, the process parameters in powder compaction are optimized for getting high relative densities. To find optimized parameters, the analytic models of powder compaction are firstly prepared by 2-dimensional rod arrays with random green densities using a quasi-random multi-particle array. Then, using finite element method, the changes in relative densities are analyzed by varying the size of the particle, the amplitude of cyclic compaction, and the coefficient of friction, which influence the relative density in cyclic compactions. After the analytic function of relative density associated process parameters are formulated by aid of the response surface method, the optimal conditions in powder compaction process are found by the grid search method.

  • PDF

A Study on the Ground Improvement by Compaction Grouting System (C.G.S에 의한 기초지반보강효과에 관한 연구)

  • 천병식;여유현;최현석;오일석
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.375-382
    • /
    • 1999
  • The use of compaction grouting system(C.G.S) evolved in the 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major uses of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other application include preventing liquefaction, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. So, on the basis of the case history constructed in recent year, a study has been performed to analyze the basic mechanism of the Compaction Grouting and verify the effectiveness of the ground improvement.

  • PDF

Compaction Properties of Fe Powder Fabricated by Warm Compaction (온간성형법으로 제조된 Fe 분말의 성형특성)

  • Kim, Se-Hoon;Lee, Young-Jung;Lee, Jea-Sung;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.185-189
    • /
    • 2007
  • Various approaches have been proposed to increase the green density. Warm compaction method has been used for the reduction of residual stress, the improvement of magnetic properties and the higher densities. In this work, the effect of warm compaction on green density of Fe powder was investigated. After ball-milling of Fe oxide powder for 30 hours, Fe oxide powder was reduced through the hydrogen reduction process. The pure Fe powder and polymer binder were mixed by 3-D tubular mixer. And then the mixed powder was warm-compacted with various compaction pressure and binder contents. The green density of specimen was added polyvinyl binder was higher than any other specimens.

Warm Compaction: FEM Analysis of Stress and Deformation States of Compacting Dies with Rectangular Profile of Various Aspect Ratio

  • Armentani, E.;Bocchini, G. F.;Gricri, G.;Esposito, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.191-192
    • /
    • 2006
  • The deformation under radial pressure of rectangular dies for metal powder compaction has been investigated by FEM. The explored variables have been: aspect ratio of die profile, ratio between diagonal of the profile and die height, insert and ring thickness, radius at die corners, interference, different insert materials, i. e. conventional HSS, HSS from powders, cemented carbide (10% Co). The analyses have ascertained the unwanted appearance of tensile normal stress on brittle materials, also "at rest", and even some dramatic changes of stress patterns as the die height increases with respect to the rectangular profile dimensions. Different materials behave differently, mainly due to difference of thermal expansion coefficients. Profile changes occur when the dies are heated up to the temperature required for warm compaction. The deformation patterns depend on compaction temperature and thermal expansion coefficients.

  • PDF

The Effect of Particle Size and Compaction Pressure on the Thermoelectric Properties of n-type FeSi2 (N형 FeSi2의 열전특성에 미치는 입자크기 및 성형압력의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4835-4841
    • /
    • 2015
  • The effect of particle size and compaction pressure on the thermoelectric properties of n-type $FeSi_2$ was investigated. The starting powders with various particle size were pressed into a compact (compaction pressure; $70{\sim}220kg/cm^2$). The compact specimens were sintered at 1473 K for 7 h and annealed at 1103 K for 100 h under Ar atmosphere to transform to the semiconducting ${\beta}$-phase. The microstructure and phases of the specimens were observed by SEM, XRD and EDS. The electrical conductivity and Seebeck coefficient were measured simultaneously for the same specimen at r.t.~1023 K in Ar atmosphere. The electrical conductivity increased with decreasing particle size and hence the increases of relative density of the sintered body and the amount of residual metallic phase ${\varepsilon}$-FeSi due to a increase of the electrical conductivity. The Seebeck coefficient exhibited the maximum value at about 700~800 K and decreased with decreasing particle size. This must be due to a increase of residual metallic phase ${\varepsilon}$-FeSi. On the other hand, the change of compaction pressure appeared to have little effect on the thermoelectric properties. Consequently, the power factor would be affected more by particle size than compaction pressure.

Fabrication and Properties of Densified Tungsten by Magnetic Pulse Compaction and Spark Plasma Sintering (자기펄스 성형 및 방전 플라즈마 소결 공정으로 제조한 텅스텐 소결체의 특성)

  • Lee, Eui Seon;Byun, Jongmin;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.321-325
    • /
    • 2020
  • The present study demonstrates the effect of magnetic pulse compaction and spark plasma sintering on the microstructure and mechanical property of a sintered W body. The relative density of green specimens prepared by magnetic pulse compaction increases with increase in applied pressure, but when the applied pressure is 3.4 GPa or more, some cracks in the specimen are observed. The pressureless-sintered W shows neck growth between W particles, but there are still many pores. The sintered body fabricated by spark plasma sintering exhibits a relative density of above 90 %, and the specimen sintered at 1,600 ℃ after magnetic pulse compaction shows the highest density, with a relative density of 93.6 %. Compared to the specimen for which the W powder is directly sintered, the specimen sintered after magnetic pulse compaction shows a smaller crystal grain size, which is explained by the reduced W particle size and microstructure homogenization during the magnetic pulse compaction process. Sintering at 1,600 ℃ led to the largest Vickers hardness value, but the value is slightly lower than that of the conventional W sintered body, which is attributed mainly to the increased grain size and low sintering density.

The Effect of Ti Powder addition on Compaction Behavior of TiO2 Nano Powder (Ti 분말 첨가가 TiO2 나노 분말의 성형성에 미치는 영향)

  • Park, Jin-Sub;Kim, Hyo-Seob;Lee, Ki-Seok;Lee, Jeong-Goo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.223-230
    • /
    • 2009
  • The compaction response of $TiO_2$ nano powders with an addition of Ti powders prepared by magnetic pulsed compaction and subsequent sintering processes was investigated. All kinds of different bulk exhibited an average shrinkage of about 12% for different MPCed pressure and sintering temperature, which were approximately 50% lower than those fabricated by general process (20%) and a maximum density of around 92.7% was obtained for 0.8GPa MPCed pressure and $1400^{\circ}C$ sintering temperature. The addition of Ti powder induced an increase in the formability and hardness of the sintered $TiO_2$. But the lower densities were obtained on sintering with addition of over 10 (wt%) Ti powder due to generation of crack during sintering. Subsequently it was verified that the optimum compaction pressure in MPC and sintering temperature were 0.8GPa and $1400^{\circ}C$, respectively.

Behavior of a Reinforced Retaining Wall During Construction (보강토의 시공중 거동 평가)

  • 노한성;최영철;백종은;김영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.95-100
    • /
    • 2000
  • When compared with conventional retaining wall system, there are many advantages to reinforced soil such as cost effectiveness, flexibility and so on. The use of reinforced soil have been increased in the last 17 years in Korea. In this study, a full-scale reinforced soil with rigid facing were constructed to investigate the behavior of reinforcing system. The results of soil pressure and strain of reinforcement during construction are described. The influence of compaction on soil pressure and strain of reinforcement is addressed. The results show that lateral earth pressures on the wall are active state during backfill. It is obtained that the lateral soil pressure depends on the installation condition of pressure cell and construction condition. It is also observed that maximum tensile strains of reinforcement are located on 50cm to 150cm from the wall. Long-term measurement will be followed to verify the design assumptions with respect to the distribution of lateral stress in the reinforcement

  • PDF