• 제목/요약/키워드: Compact tension specimen

검색결과 102건 처리시간 0.025초

다단계 하중방향 변화에 의한 피로균열 전파거동에서의 모드II 영향 (Effect of Mode II in The Fatigue Crack Propagation Behavior by Variation of Multilevel Loading Direction)

  • 홍석표;송삼홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.725-728
    • /
    • 2004
  • In this study, the effect of mode II by variation of multilevel loading direction was experimentally investigated in the fatigue crack propagation behavior. To generate mixed-mode I+II loading state, the compact tension shear(CTS) specimen and loading device were used in this tests. The experimental method divided into three steps and three cases that were step I(0$^{\circ}$), step II(30$^{\circ}$, 60$^{\circ}$, 90$^{\circ}$),step III(0$^{\circ}$) and case I(0$^{\circ}$ ⇒ 30$^{\circ}$ ⇒ 0$^{\circ}$), case II(0$^{\circ}$ ⇒ 60$^{\circ}$ ⇒ 0$^{\circ}$), case III(0$^{\circ}$ ⇒ 90$^{\circ}$ ⇒ 0$^{\circ}$). The result of test, the step II affected to the step III in the all case. Specially, The fatigue crack propagation rate was faster and the fatigue life was smaller than of mixed mode I+II(30$^{\circ}$,60$^{\circ}$) due to the effect of mode II in the step III of the case III

  • PDF

SWS 490B와 Al 7075-T6 합금의 피로균열 열림 및 닫힘시 음향방출 특성 분석 (AE Characteristics of Fatigue Crack Opening and Closure in SWS 490B and Al 7075-T6 Alloy)

  • 윤동진;정충재;이승석;원창환
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.960-968
    • /
    • 2003
  • The objective of this study is to investigate the effect of AE activities in the crack opening and closure during the fatigue test. The laboratory experiments for various materials and test conditions were carrie out to identify AE characteristics of fatigue crack propagation. Compact tension specimens of SWS 490B and Al 7075-T6 alloy were prepared for fatigue test. AE activities were analyzed based on the phase of the loading cycle. In case of SWS 490B, the most of AE was generated when the crack began opening and the crack closed fully, whereas a few in the full opening of the crack. On the other hand, in case of Al 7075-T6, a distinct AE activity was observed during crack opening process. AE activity in the peak loading of cycle was different with each specimen. However, in the same material, AE activity was not affected by the change of cyclic frequency (0.1, 0.2, 1.0 ㎐). It was found that AE activities during crack opening and closure depend on material properties such as micro-structure, yield strength and elongation.

TIG 용접된 Al6013-T4 알루미늄 합금에서 피로균열전파저항의 변동성에서의 PWHT의 영향 (Effect of PWHT on Variability of fatigue Crack Propagation Resitance in TIG Welded Al 6013-T4 Aluminum Alloy)

  • 구나완;이상열;김선진
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.73-80
    • /
    • 2011
  • The experimental investigation focuses on an influence of artificial aging time in longitudinal butt welded Al 6013-T4 aluminum alloy on the fatigue crack growth resistance. The preferred welding processes for this alloy are frequently tungsten inert gas welding (TIG) process due to its comparatively easier applicability and better weldability than other gas metal arc welding. Fatigue crack growth tests were carried out on compact tension specimens (CT) in longitudinal butt TIG welded after T82 heat treatment was varied in three artificial aging times of 6 hours, 18 hours and 24 hours. Of the three artificial aging times, 24 hours of artificial aging time are offering better resistance against the growing fatigue cracks. The superior fatigue crack growth resistance preferred spatial variation of materials within each specimen in the Paris equation based on reliability theory and fatigue crack growth rate by crack length are found to be the reasons for superior fatigue resistance of 24 hours of artificial aging time was compared to other joints. The highest of crack propagation resistance occurs in artificial aging times of 24 hours due to the increase in grain size (fine grained microstructures).

ACOUSTIC EMISSION CHARACTERISTICS OF STRESS CORROSION CRACKS IN A TYPE 304 STAINLESS STEEL TUBE

  • HWANG, WOONGGI;BAE, SEUNGGI;KIM, JAESEONG;KANG, SUNGSIK;KWAG, NOGWON;LEE, BOYOUNG
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.454-460
    • /
    • 2015
  • Acoustic emission (AE) is one of the promising methods for detecting the formation of stress corrosion cracks (SCCs) in laboratory tests. This method has the advantage of online inspection. Some studies have been conducted to investigate the characteristics of AE parameters during SCC propagation. However, it is difficult to classify the distinct features of SCC behavior. Because the previous studies were performed on slow strain rate test or compact tension specimens, it is difficult to make certain correlations between AE signals and actual SCC behavior in real tube-type specimens. In this study, the specimen was a AISI 304 stainless steel tube widely applied in the nuclear industry, and an accelerated test was conducted at high temperature and pressure with a corrosive environmental condition. The study result indicated that intense AE signals were mainly detected in the elastic deformation region, and a good correlation was observed between AE activity and crack growth. By contrast, the behavior of accumulated counts was divided into four regions. According to the waveform analysis, a specific waveform pattern was observed during SCC development. It is suggested that AE can be used to detect and monitor SCC initiation and propagation in actual tubes.

마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 변동성에 미치는 균열 방향의 영향 (Effect of Crack Orientation on Spatial Randomness of Fatigue Crack Growth Rate in FSWed 7075-T651 Aluminum Alloy Joints)

  • 정의한;김선진
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.91-98
    • /
    • 2014
  • In this investigation, the effect of crack orientation on spatial randomness of fatigue crack growth rate (FCGR) in friction stir welded (FSWed) 7075-T651 aluminum alloy joints has been statistically analyzed by Weibull distribution. The fatigue crack growth tests are conducted under three different constant stress intensity factor range (SIFR) control at room temperature with R = 0.1 and frequency 10Hz on compact tension (CT) specimen machined at base metal (BM) and weld metal (WM). The experimental fatigue crack growth rate data were obtained for two types of specimens having LT and TL orientations. LT specimens both base metal and weld metal showed higher fatigue crack growth rate as compared to TL specimens. In the lower SIFR region, FCGR were found to be almost 3 times higher in higher SIFR region. The shape parameter of Weibull both LT and TL orientation for FCGR was increased with increasing SIFR, the scale parameter was also increased with increasing SIFR. The smallest value of the shape parameter was shown in weld metal specimens having LT orientation at lower SIFR region.

손상역학에 근거한 파괴시편의 균열길이와 두께 영향 평가 (Evaluation of Crack Length and Thickness Effects of Fracture Specimen using Damage Mechanics)

  • 장윤석;이태린;최재붕;석창성;김영진
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.116-123
    • /
    • 2006
  • During the last two decades, many researchers investigated influences of stress triaxiality on ductile fracture for various specimens and structures. With respect to a transferability issue, the local approach reflecting micro-mechanical specifics is one of effective methods to predict constraint effects. In this paper, the applicability of the local approach was examined through a series of finite element analyses incorporating modified GTN (Gurson-Tvergaard-Needleman) and Rousselier models as well as fracture toughness tests. To achieve this goal, fracture resistance (J-R) curves of several types of compact tension (CT) specimens with various crack length, with various thickness and with/without 20% side- grooves were estimated. Then. the constraint effects were examined by comparing the numerically estimated J-R curves with experimentally determined ones. The assessment results showed that the damage models might be used as useful tool for fracture toughness estimation and both the crack length and thickness effects should be considered for realistic structural integrity evaluation.

SS304와 SS316의 평면응력 파괴인성치 측정과 피로 균열 전파에 대한 실험적 연구 (Experimental Study on Plane Stress Fracture Toughness and Fatigue Crack Propagation of SS304 and SS316)

  • 이억섭;한유상;유승석
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.61-69
    • /
    • 1997
  • CT 시험편을 사용하여 평면응력 파괴인성치를 산정하는 간단하고 새로운 방법론을 제안하였다. 평면응력 조건하의 균열선단에서 발생하는 좌굴을 방지하는 판을 부착하여 SS304와 SS316의 평면응력 파괴인성치를 정확하게 결정하였다. SS304와 SS316의 피로균열 전파거동이 피로하중 주파수에 미치는 영향을 영상해석법(LAT)을 사용하여 규명하였다.

  • PDF

$\Delta$J 적분의 경로독립성에 관한 연구 (Study on the Path Independency of $\Delta$J Integral)

  • 김태순;박재학;윤기봉
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.16-24
    • /
    • 1996
  • In this study we simulate the fatigue test of a compact tension specimen and obtain the displacements, stresses and strains by using the finite element method. And we examine the path independency of $\Delta$J integral values and compare it with $\Delta$J integral values calculated from load-load line displacement curve. From the results of this study, we can find that $\Delta$J integral show the path Independency for saturated materials. We can also find that the path independency of $\Delta$J Is not satisfied when different material Is assumed near the crack tip, but the difference in $\Delta$J is small. And $\Delta$J integral values calculated from load-load line displacement is very analogous with those from integration path but always have lower values than those from integration paths. In the case of crack closing, we found that $\Delta$J integral values from load-load line displacement should be calculated with the load Increment values based on the crack opening point. The unsaturated material is also simulated and its $\Delta$J shows different values according to the path, but the difference is small.

  • PDF

SrAl2O4(Eu,Dy,Nd) 압광체를 이용한 균열첨단에서의 응력장 가시화 연구 (Direct Observation of Crack Tip Stress Field Using the Mechanoluminescence of SrAl2O4:(Eu,Dy,Nd))

  • 김지식;손기선
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.493-497
    • /
    • 2003
  • The present investigation aims at visualizing the crack tip stress field using a mechanoluminescence material. The well known compound $SrAl_2O_4$:$Eu^{2+}$ was adopted as a mechanolurninescence material. Two more trivalent rare-earth elements such as Dy and Nd were taken into consideration as codopants to provide the appropriate trap levels. Samples of a variety of compositions were prepared by varing $Eu^{2+}$, $Dy^{3+}$, and $Nd^{3+}$ doping contents, for which the combinatorial chemistry method was used. In order to search for the optimum composition for the highest mechanoluminescence, the luminescence induced by a compressive device including a CCD camera. In parallel, a compact tension specimen was prepared by mixing the luminescence powders of optimum composition and epoxy resin. Crack initiation from the mechanically machined sharp note tip and its growth during loading were found to be associated with the extent of light emission from $SrAl_2O_4$.