• Title/Summary/Keyword: Compact doppler radar

Search Result 6, Processing Time 0.017 seconds

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

Development of Doppler Radar Using Compact Dual-Circularly Polarized Antenna (소형 이중 원형편파 안테나를 이용한 도플러 레이다 개발)

  • Kim, Tae-Hong;Lee, Hyeonjin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.121-124
    • /
    • 2015
  • In this paper, we developed the compact Doppler radar using the compact dual-circularly polarized antenna for medical application. The operating frequency is 2.47 GHz for considering ISM band. In order to decrease the size of the entire system, we designed the compact antenna and located the circuit board at the back of the antenna. The simulation of the proposed antenna was performed by the finite difference time domain (FDTD) method. The total volume of the proposed system is $65{\times}45{\times}6mm^3$ including the antenna. From the experiment, the developed bio-radar could be used to support the device for medical applications.

Receiver for Ku-band Compact Doppler Radar (Ku-대역 소형 도플러 레이다용 수신부)

  • Lee, Man-Hee;An, Se-Hwan;Kim, Youn-Jin;Kim, Hong-Rak;Jeong, Hae-Chang;Kim, Sun-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.89-93
    • /
    • 2020
  • In this paper, Ku-band Receiver for compact doppler radar has been designed and fabricated. It composed of MWR(Microwave Receiver) and IFR(Intermediate Frequency Receiver) which have 5 receive path. We applied limiter circuit to protect MWR from Tx leakage power and maximum 2 W. IFR can change the Rx path to broad band or narrow band by MSC(Mode Selection Switch). It is observed that fabricated receiver performs 68 dB gain and 3.7 dB noise figure, 93 ns limiter recovery time. Proposed Ku-band receiver is expected to apply for Ku-band compact doppler radar.

Range-Doppler Map generating simulator for ship detection and tracking research using compact HF radar (콤팩트 HF 레이더를 이용한 선박 검출 및 추적 연구를 위한 Range-Doppler Map 생성 시뮬레이터)

  • Lee, Younglo;Park, Sangwook;Lee, Sangho;Ko, Hanseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.90-96
    • /
    • 2017
  • Due to the merit of having wide range with low cost, HF radar's ship detection and tracking research as maritime surveillance system has been recently studied. Many ship detection and tracking algorithms have been developed so far, however, performance comparison cannot be conducted properly because the states of target ships (such as moving path, size, etc.) differ from each study. In this paper, we propose a simulator based on compact HF radar, which generates data according to the size and moving path of target ship. Given the generated data with identical ship state, it is possible to conduct performance comparison. In order to validate the proposed simulator, the simulated data has been compared with real data collected by the SeaSonde HF radar sites. As a result, it has been shown that our simulated data resembles the real data. Therefore, the performance of various detection or tracking algorithms can be compared and analyzed respectively by using our simulated data.

Wide-area Surveillance Applicable Core Techniques on Ship Detection and Tracking Based on HF Radar Platform (광역감시망 적용을 위한 HF 레이더 기반 선박 검출 및 추적 요소 기술)

  • Cho, Chul Jin;Park, Sangwook;Lee, Younglo;Lee, Sangho;Ko, Hanseok
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.313-326
    • /
    • 2018
  • This paper introduces core techniques on ship detection and tracking based on a compact HF radar platform which is necessary to establish a wide-area surveillance network. Currently, most HF radar sites are primarily optimized for observing sea surface radial velocities and bearings. Therefore, many ship detection systems are vulnerable to error sources such as environmental noise and clutter when they are applied to these practical surface current observation purpose systems. In addition, due to Korea's geographical features, only compact HF radars which generates non-uniform antenna response and has no information on target information are applicable. The ship detection and tracking techniques discussed in this paper considers these practical conditions and were evaluated by real data collected from the Yellow Sea, Korea. The proposed method is composed of two parts. In the first part, ship detection, a constant false alarm rate based detector was applied and was enhanced by a PCA subspace decomposition method which reduces noise. To merge multiple detections originated from a single target due to the Doppler effect during long CPIs, a clustering method was applied. Finally, data association framework eliminates false detections by considering ship maneuvering over time. According to evaluation results, it is claimed that the proposed method produces satisfactory results within certain ranges.

A 2.4 GHz Bio-Radar System with Small Size and Improved Noise Performance Using Single Circular-Polarized Antenna and PLL (하나의 원형 편파 안테나와 PLL을 이용하여 소형이면서도 개선된 잡음 성능을 갖는 2.4 GHz 바이오 레이더 시스템)

  • Jang, Byung-Jun;Park, Jae-Hyung;Yook, Jong-Gwan;Moon, Jun-Ho;Lee, Kyoung-Joung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1325-1332
    • /
    • 2009
  • In this paper, we design a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals with small size and improved noise performance using single circular-polarized antenna and phase-locked loop. The demonstrated bio-radar system consists of single circular-polarized antenna with $90^{\circ}$ hybrid, low-noise amplifier, power amplifier, voltage-controlled oscillator with phase-locked loop circuits, quadrature demodulator and analog circuits. To realize compact size, the printed annular ring stacked microstrip antenna is integrated on the transceiver circuits, so its dimension is just $40\times40mm^2$. Also, to improve signal-to-noise-ratio performance by phase noise due to transmitter leakage signal, the phase-locked loop circuit is used. The measured results show that the heart rate and respiration accuracy was found to be very high for the distance of 50 cm without the additional digital signal processing.