• 제목/요약/키워드: Commute time embedding

검색결과 5건 처리시간 0.017초

컴뮤트 타임 기반의 다양체 임베딩을 이용한 파형 신호 인식에 관한 연구 (A Study on Classification of Waveforms Using Manifold Embedding Based on Commute Time)

  • 한희일
    • 전자공학회논문지
    • /
    • 제51권2호
    • /
    • pp.148-155
    • /
    • 2014
  • 본 논문에서는 파형 신호에서 패치를 추출하고 이를 패치 그래프로 구성한 다음, 이로부터 대표적인 다양체 임베딩 방식인 컴뮤트 타임 임베딩 기법을 구현하고, 이의 특성을 분석한다. 특히 음성 신호나 악기 음 등, 시간에 따라 스펙트럼이 가변적인 신호를 임베딩하면 스펙트럼의 변화에도 불구하고 그 신호 고유의 기하 구조를 생섬함을 실험으로 확인한다. 다양체 임베딩은 비선형 공간에 놓여 있는 고차원 데이터를 저차원 공간으로의 효율적인 맵을 가능하게 하지만 그래프 구성에 이용된 데이터에 대한 정보만 알 수 있고 그렇지 않은 데이터(out-of-sample data)에 대해서는 정보를 얻기 어렵다. 따라서 다양체 임베딩은 데이터 클러스터링에 적절히 적용 가능하지만, 훈련 과정을 통해 얻은 정보를 기초로 유추 기능이 요구되는 인식 등에는 응용하기 어려운 제약이 따른다. 이를 해결하기 위하여 본 논문에서는 다양체 임베딩이 인식 분야에도 적용 가능하도록 새로운 알고리즘을 제안하고 악기 음 분류 실험을 통하여 그 특성을 분석한다.

대용량 컴뮤트 타임 임베딩을 위한 연산 속도 개선 방식 제안 (Proposing the Methods for Accelerating Computational Time of Large-Scale Commute Time Embedding)

  • 한희일
    • 전자공학회논문지
    • /
    • 제52권2호
    • /
    • pp.162-170
    • /
    • 2015
  • 컴뮤트 타임 임베딩을 구현하려면 그래프 라플라시안 행렬의 고유값과 고유벡터를 구하여야 하는데, $o(n^3)$의 계산량이 요구되어 대용량 데이터에는 적용하기 어려운 문제가 있다. 이를 줄이기 위하여 표본화 과정을 통하여 크기가 줄어든 그래프 라플라시안 행렬에서 구한 다음, 원래의 고유값과 고유벡터를 근사화시키는 Nystr${\ddot{o}}$m 기법을 주로 채택한다. 이 과정에서 많은 오차가 발생하는데, 이를 개선하기 위하여 본 논문에서는 그래프 라플라시안 대신에 가중치 행렬을 표본화하고 이로부터 구한 고유값과 고유벡터를 그래프 라플라시안의 고유값과 고유벡터로 변환하는 기법을 이용하여 대용량 데이터로 구성된 스펙트럴 그래프를 근사적으로 컴뮤트 타임 임베딩하는 기법을 제안한다. 하지만, 이 방식도 스펙트럼 분해를 계산하여야 하므로 데이터의 크기가 증가하면 적용하기 어려운 문제가 발생한다. 이의 대안으로, 스펙트럼 분해를 계산하지 않고도 데이터 집합의 크기에 영향을 받지 않으면서 컴뮤트 타임을 근사적으로 계산하는 방식을 구현하고 이들의 특성을 실험적으로 분석한다.

스펙트럴 그래프 기반 Commute Time 임베딩 특성 분석 (Analysis of Commute Time Embedding Based on Spectral Graph)

  • 한희일
    • 한국멀티미디어학회논문지
    • /
    • 제17권1호
    • /
    • pp.34-42
    • /
    • 2014
  • 본 논문에서는 파형 신호와 이미지 등에서 패치를 추출하고 이를 패치 그래프로 구성한 다음, 이로부터 각 패치 간의 컴뮤트 타임을 구하여 이에 기반한 임베딩 기법을 구현하고, 가장 널리 이용되는 PCA(principal component analysis) 임베딩 결과와 비교 분석한다. 임베딩에서 차원을 줄일 경우 원 임베딩과 축소된 차원의 임베딩 간에는 오차가 크지 않도록 차원을 결정하는 것이 일반적이다. 하지만 본 논문에서 구현한 임베딩 방식은 삼차원 이하로 줄여 오차가 80~90%를 상회하여도 축소된 차원의 임베딩 공간에서 각 신호 고유의 기하 구조를 생성하므로 패턴 분류나 기계 학습 등의 응용 목적에 활용 가능함을 실험으로 확인한다.

파형 신호 공간의 위상 구조 분석 (Topological Analysis of Spaces of Waveform Signals)

  • 한희일
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.146-154
    • /
    • 2016
  • This paper presents methods to analyze the topological structures of the spaces composed of patches extracted from waveform signals, which can be applied to the classification of signals. Commute time embedding is performed to transform the patch sets into the corresponding geometries, which has the properties that the embedding geometries of periodic or quasi-periodic waveforms are represented as closed curves on the low dimensional Euclidean space, while those of aperiodic signals have the shape of open curves. Persistent homology is employed to determine the topological invariants of the simplicial complexes constructed by randomly sampling the commute time embedding of the waveforms, which can be used to discriminate between the groups of waveforms topologically.

파형 신호에 대한 다양체 임베딩의 위상학적 불변항의 분석 (Analysis of Topological Invariants of Manifold Embedding for Waveform Signals)

  • 한희일
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.291-299
    • /
    • 2016
  • 본 논문에서는 임의의 주기적인 현상이나 특성은 위상구조와 밀접한 관련이 있음을 추론하고 이를 실험적으로 확인한다. 실험대상으로 주기적 특성이 있는 다양한 악기음을 선택하여 이를 유클리드 공간에 임베딩하고 이로부터 호몰로지 군을 계산하여 위상특성을 분석한다. 이를 위하여, 파형신호에서 추출한 패치모음을 패치 그래프로 구성한 다음, 대표적인 다양체 학습 방식인 통근시간 임베딩 기법을 이용하여 기하구조로 변환한다. 스펙트럼이 시간에 따라 가변적인 파형신호를 통근시간 임베딩할 때, 그에 따라 생성되는 기하구조는 변화하지만 그 신호 고유의 내재된 위상구조는 거의 변하지 않는다. 본 논문에서는 임베딩 데이터의 일부를 표본화하여 단순 복합체를 구성한 다음 이로부터 호몰로지를 계산하여 임베딩 기하구조의 위상특성을 분석하고, 이의 활용방안을 논의한다.