• Title/Summary/Keyword: Communication module

Search Result 2,091, Processing Time 0.023 seconds

Development of a Mountainous Area Monitoring System based on IoT Technology (IoT 기술 기반의 산악지 모니터링 시스템 개발)

  • Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.437-446
    • /
    • 2017
  • 70 percent of Korea's territory is covered with mountains, whose difficult conditions can cause damage to facilities. Recently, the demand for facilities related to outdoor activities including monorails has been on the rise, and such facilities are much more likely to become damaged. For this reason, a monitoring system applying IoT to mountainous areas was developed and its applicability is evaluated in this study. The current status of the existing mountainous facilities and monitoring systems were reviewed, and the current wired monitoring technology was analyzed. A scenario for IoT-based monitoring was developed, and then sensor nodes were developed, which include an RF-communication module and interface, power-supply and solar-cell. A testbed was set up at K University. The same data was collected by the wireless system as had been collected by the wired one. The study findings are as follows. Firstly, by using the wireless system, it is estimated that the construction duration can be reduced by about 25 percent, while the construction costs can be reduced by about 3~52 percent. Secondly, the safety of the construction workers can be improved by making the working conditions less dangerous, such as by eliminating the need to transport cables.

A Development of Fluxgate Sensor-based Drone Magnetic Exploration System (플럭스게이트 센서 기반 드론 자력탐사 시스템 개발)

  • Noh, Myounggun;Lee, Seulki;Lee, Heuisoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, we have developed a drone magnetic exploration system (proto-type) using a fluxgate magnetic sensor. Hardware of the system consists of a fluxgate magnetometer, an inertial measurement unit (IMU), a GPS, and a communication module. And we have developed monitoring software, which enables it to transmit the measured data to the ground control system (GCS) in real time. The measured magnetic data are finally saved as 1 Hz data after passing through a notch filter and a band-pass filter. For verification of this system, a preliminary test was conducted to check the magnetic responses of a magnetic object first, then the field test was carried out in two iron mines. We tested the developed system on the field test in Pocheon, Gyeonggi and Jeongseon, Gangwon. The magnetic data from the developed drone system was very similar to those from unmanned airship system developed by Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result, preliminary experiment and field test have demonstrated that this system is applicable for outdoor aeromagnetic exploration. It requires more studies to improve filter function and instrument performance to minimize noise in the future.

Development and Performance Test of Gas Safety Management System based on the Ubiquitous Home (u-home 가스안전관리시스템 개발 및 성능시험)

  • Park, Gyou-Tae;Lyu, Geun-Jun;Kim, Young-Gyu;Kim, Yeong-Dae;Jee, Cha-Wan;Kwon, Jong-Won;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.13-20
    • /
    • 2011
  • In this paper, we proposed a system to raise gas safety management by using the wireless communication module and intelligent gas safety appliances. Our designed systems configure a micom-gas meter, an automatic extinguisher, sensors, and a wallpad. A micom-gas-meter monitors gas flow, gas pressure, and earthquake. An automatic fire extinguisher checks gas(combustible) leaks and temperature of $100^{\circ}C$ and $130^{\circ}C$. Sensors measure smoke and CO gas. In our novel system, a micom-gas meter cut off inner valve with warnings, an automatic fire extinguisher cut off middle valve and spray extinguishing materials, and sensors generate signals for smoke and CO when occurring gas risk. Gas safety appliances and sensors takes safety measures, and transmit those signal to a wallpad. The wallpad again transmit signal like events to a control server. Users can connect web pages for gas safety through B-ISDN and control and manage them. We hereby devised scenarios for gas safety and risk management, and demonstrated their effectiveness through experiments.

Image Processing Algorithms for DI-method Multi Touch Screen Controllers (DI 방식의 대형 멀티터치스크린을 위한 영상처리 알고리즘 설계)

  • Kang, Min-Gu;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.1-12
    • /
    • 2011
  • Large-sized multi-touch screen is usually made using infrared rays. That is because it has technical constraints or cost problems to make the screen with the other ways using such as existing resistive overlays, capacitive overlay, or acoustic wave. Using infrared rays to make multi-touch screen is easy, but is likely to have technical limits to be implemented. To make up for these technical problems, two other methods were suggested through Surface project, which is a next generation user-interface concept of Microsoft. One is Frustrated Total Internal Reflection (FTIR) which uses infrared cameras, the other is Diffuse Illumination (DI). FTIR and DI are easy to be implemented in large screens and are not influenced by the number of touch points. Although FTIR method has an advantage in detecting touch-points, it also has lots of disadvantages such as screen size limit, quality of the materials, the module for infrared LED arrays, and high consuming power. On the other hand, DI method has difficulty in detecting touch-points because of it's structural problems but makes it possible to solve the problem of FTIR. In this thesis, we study the algorithms for effectively correcting the distort phenomenon of optical lens, and image processing algorithms in order to solve the touch detecting problem of the original DI method. Moreover, we suggest calibration algorithms for improving the accuracy of multi-touch, and a new tracking technique for accurate movement and gesture of the touch device. To verify our approaches, we implemented a table-based multi touch screen.

Hybrid (refrctive/diffractive) lens design for the ultra-compact camera module (초소형 영상 전송 모듈용 DOE(Diffractive optical element)렌즈의 설계 및 평가)

  • Lee, Hwan-Seon;Rim, Cheon-Seog;Jo, jae-Heung;Chang, Soo;Lim, Hyun-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.240-249
    • /
    • 2001
  • A high speed ultra-compact lens with a diffractive optical element (DOE) is designed, which can be applied to mobile communication devices such as IMT2000, PDA, notebook computer, etc. The designed hybrid lens has sufficiently high performance of less than f/2.2, compact size of 3.3 mm (1st surf. to image), and wide field angle of more than 30 deg. compared with the specifications of a single lens. By proper choice of the aspheric and DOE surface which has very large negative dispersion, we can correct chromatic and high order aberrations through the optimization technique. From Seidel third order aberration theory and Sweatt modeling, the initial data and surface configurations, that is, the combination condition of the DOE and the aspherical surface are obtained. However, due to the consideration of diffraction efficiency of a DOE, we can choose only four cases as the optimization input, and present the best solution after evaluating and comparing those four cases. On the other hand, we also report dramatic improvement in optical performance by inserting another refractive lens (so-called, field flattener), that keeps the refractive power of an original DOE lens and makes the petzval sum zero in the original DOE lens system. ystem.

  • PDF

MPEG-H 3D Audio Decoder Structure and Complexity Analysis (MPEG-H 3D 오디오 표준 복호화기 구조 및 연산량 분석)

  • Moon, Hyeongi;Park, Young-cheol;Lee, Yong Ju;Whang, Young-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.432-443
    • /
    • 2017
  • The primary goal of the MPEG-H 3D Audio standard is to provide immersive audio environments for high-resolution broadcasting services such as UHDTV. This standard incorporates a wide range of technologies such as encoding/decoding technology for multi-channel/object/scene-based signal, rendering technology for providing 3D audio in various playback environments, and post-processing technology. The reference software decoder of this standard is a structure combining several modules and can operate in various modes. Each module is composed of independent executable files and executed sequentially, real time decoding is impossible. In this paper, we make DLL library of the core decoder, format converter, object renderer, and binaural renderer of the standard and integrate them to enable frame-based decoding. In addition, by measuring the computation complexity of each mode of the MPEG-H 3D-Audio decoder, this paper also provides a reference for selecting the appropriate decoding mode for various hardware platforms. As a result of the computational complexity measurement, the low complexity profiles included in Korean broadcasting standard has a computation complexity of 2.8 times to 12.4 times that of the QMF synthesis operation in case of rendering as a channel signals, and it has a computation complexity of 4.1 times to 15.3 times of the QMF synthesis operation in case of rendering as a binaural signals.

Area-efficient Interpolation Architecture for Soft-Decision List Decoding of Reed-Solomon Codes (연판정 Reed-Solomon 리스트 디코딩을 위한 저복잡도 Interpolation 구조)

  • Lee, Sungman;Park, Taegeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.59-67
    • /
    • 2013
  • Reed-Solomon (RS) codes are powerful error-correcting codes used in diverse applications. Recently, algebraic soft-decision decoding algorithm for RS codes that can correct the errors beyond the error correcting bound has been proposed. The algorithm requires very intensive computations for interpolation, therefore an efficient VLSI architecture, which is realizable in hardware with a moderate hardware complexity, is mandatory for various applications. In this paper, we propose an efficient architecture with low hardware complexity for interpolation in soft-decision list decoding of Reed-Solomon codes. The proposed architecture processes the candidate polynomial in such a way that the terms of X degrees are processed in serial and the terms of Y degrees are processed in parallel. The processing order of candidate polynomials adaptively changes to increase the efficiency of memory access for coefficients; this minimizes the internal registers and the number of memory accesses and simplifies the memory structure by combining and storing data in memory. Also, the proposed architecture shows high hardware efficiency, since each module is balanced in terms of latency and the modules are maximally overlapped in schedule. The proposed interpolation architecture for the (255, 239) RS list decoder is designed and synthesized using the DongbuHitek $0.18{\mu}m$ standard cell library, the number of gate counts is 25.1K and the maximum operating frequency is 200 MHz.

A Study on Apply of Smart Sensors for Wheelchair Balancing Control (휠체어 균형 조정을 위한 스마트 센서의 적용에 관한 연구)

  • Ma, Linh Van;Cho, Young-bin;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1585-1592
    • /
    • 2018
  • Due to un-balancing weight allocation on the wheelchair the existing wheelchair system are faced with the risk of flipping or falling when a wheelchair goes up to a hill. In to order to be safer during riding the wheelchair, in this paper, we proposed a real-time new solution using the integrated Gyro Sensor and Tilt Sensor for controlling the balance. Because the typical property of wheelchair is for the special user who meets the difficulty in moving on foot the maintain the balance of wheel-chair systems have become important and helpful. In our method, we calculate the seat angle using information from Tilt Sensor. However, due to the law of inertia when a wheelchair is moving there is a deviation in the output value of Tilt Sensor. Therefore, we have to optimize the value of the angle by utilizing the acceleration that is the output of the Gyro Sensor. We took the advantages by using the combination of Gyro and Tilt sensors. Moreover, we also solved the consumption issue of the whole system. Through various experimentations with usage of ZigBee sensor module, the power consumption for the balancing system is reduced significantly.

ICT-based Living in the Contact Type Service Model for Self-life Support of the Elderly Living Alone (독거노인 자가생활지원을 위한 ICT기반의 생활밀착형 서비스 모델 개발)

  • Kim, Mi-Yun;Seo, Dong-Jo;Byun, Jong-Bong;Kang, Jong-Kwan
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.25-38
    • /
    • 2015
  • In case of current South Korea, the rapid graying is in the progress. Because of it, the increase of elders who live alone causes variety of social, economic and national problems. Especially in the modern city, the health care, safety and maintenance of pleasant and joyful life of elders who live alone are being a big social issue. Even though practical services have been tried at the whole of government approach, the detailed alternatives are insufficient to improve the daily life support and service to approach the information. This research suggests the "ELA Service Model" which actively improves the easy access to information and corresponds to condition and circumstance of elders for providing the ICT-base Elderly Living alone care service. It is a step self-life support service based on fundamental desire of elders which resolves the problem and contributes to establish the active and balanced policy to the elderly.

CoAP-based Time Synchronization Algorithm in Sensor Network (센서 네트워크에서의 CoAP 기반 시각 동기화 기법)

  • Kim, Nac-Woo;Son, Seung-Chul;Park, Il-Kyun;Yu, Hong-Yeon;Lee, Byung-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.39-47
    • /
    • 2015
  • In this paper, we propose a new time synchronization algorithm using CoAP(constrained-application protocol) in sensor network environment, which handles a technique that synchronizes an explicit timestamp between sensor nodes not including an additional module for time-setting and sensor node gateway linked to internet time server. CoAP is a standard protocol for sensor data communication among sensor nodes and sensor node gateway to be built much less memory and power supply in constrained network surroundings including serious network jitter, packet losses, etc. We have supplied an exact time synchronization implementation among small and cheap IP-based sensor nodes or non-IP based sensor nodes and sensor node gateway in sensor network using CoAP message header's option extension. On behalf of conventional network time synchronization method, as our approach uses an exclusive protocol 'CoAP' in sensor network, it is not to become an additional burden for synchronization service to sensor nodes or sensor node gateway. This method has an average error about 2ms comparing to NTP service and offers a low-cost and robust network time synchronization algorithm.