• 제목/요약/키워드: Communication barrier

검색결과 216건 처리시간 0.022초

채널도핑강도에 대한 이중게이트 MOSFET의 DIBL분석 (Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Concentration)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.579-584
    • /
    • 2012
  • 본 연구에서는 이중게이트(Double Gate; DG) MOSFET에서 발생하는 단채널효과 중 하나인 드레인유기장벽 감소(Drain Induced Barrier Lowering; DIBL)에 대하여 분석하고자 한다. 드레인유도장벽감소 현상은 채널의 길이가 짧아질 때 드레인 전압이 소스측 전위장벽에 영향을 미쳐 장벽의 높이를 감소시키는 현상으로써 단채널에서 발생하는 매우 중요한 효과이다. 본 연구에서는 DIBL을 해석하기 위하여 이미 발표된 논문에서 타당성이 입증된 포아송 방정식의 해석학적 전위분포를 이용할 것이다. 이 모델은 특히 전하분포함수에 대하여 가우시안 함수를 사용함으로써 보다 실험값에 가깝게 해석하였으며 소자 파라미터인 채널두께, 산화막두께, 도핑농도 등에 대하여 드레인유도장벽감소의 변화를 관찰하고자 한다.

Effect of Recombination and Decreasing Low Current on Barrier Potential of Zinc Tin Oxide Thin-Film Transistors According to Annealing Condition

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • 제17권2호
    • /
    • pp.161-165
    • /
    • 2019
  • In this study, zinc tin oxide (ZTO) thin-film transistors are researched to observe the correlation between the barrier potential and electrical properties. Although much research has been conducted on the electronic radiation from Schottky contacts in semiconductor devices, research on electronic radiation that occurs at voltages above the threshold voltage is lacking. Furthermore, the current phenomena occurring below the threshold voltage need to be studied. Bidirectional transistors exhibit current flows below the threshold voltage, and studying the characteristics of these currents can help understand the problems associated with leakage current. A factor that affects the stability of bidirectional transistors is the potential barrier to the Schottky contact. It has been confirmed that Schottky contacts increase the efficiency of the element in semiconductor devices, by cutting off the leakage current, and that the recombination at the PN junction is closely related to the Schottky contacts. The bidirectional characteristics of the transistors are controlled by the space-charge limiting currents generated by the barrier potentials of the SiOC insulated film. Space-charge limiting currents caused by the tunneling phenomenon or quantum effect are new conduction mechanisms in semiconductors, and are different from the leakage current.

Language Barriers and Communication Problems under Multicultural Environment and Marine Accident

  • Jeong, Min-Gi;Ha, Weon-Jae;Park, Kyeung-Eun;Lee, Myoung-Ki;Park, Jin-Soo
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.254-255
    • /
    • 2017
  • As the number of ships and goods shipped by marine transportation increases, almost all shipping companies adopted foreign crews in order to overcome lack of seafarers and be competitive for manning cost. Thus, these days it is inevitable to work with foreign crews aboard ships, but there occur many marine accidents due to language barriers and communication problems under multicultural and multilingual shipboard environments. In order to resolve troubles resulting from different languages, reduce miscommunication risks, and make working on ships safe and efficient, this study recognized the current status of ships with mixed crews, analyzed marine accidents caused by communication problems not only in Korea but also in other countries using analytical methodologies. Additionally, existing hazards affecting miscommunication were identified and risk of miscommunication was quantitatively evaluated while offering suggestions and future forecasts. Consequently, in this study we suggested that fundamental dialogues are to be necessarily educated on the ships with foreign crews so as to reduce the language barrier and risk of miscommunication. Furthermore, a standard maritime Korean language program and manual targeting Korean coastal vessels would be developed in the next step.

  • PDF

Modified Trench MOS Barrier Schottky (TMBS) Rectifier

  • Moon Jin-Woo;Choi Yearn-Ik;Chung Sang-Koo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권2호
    • /
    • pp.58-62
    • /
    • 2005
  • A trench MOS barrier Schottky (TMBS) rectifier is proposed which utilizes the upper half of the trench sidewall as an active area. The proposed structure improves the forward voltage drop by 20$\%$ in comparison with the conventional one without degradation in breakdown voltage. An analytical model for the field distribution is given and compared with two-dimensional numerical simulations.

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

The double-barrier technique using platelet-rich fibrin for closure of oroantral fistulas

  • Jae-Woong Jung;Sung ok Hong;Eun-Jee Lee;Ra-Yeon Kim;Yu-Jin Jee
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제49권3호
    • /
    • pp.163-168
    • /
    • 2023
  • An oroantral fistula (OAF) or oroantral communication (OAC) is an opening between the oral cavity and the maxillary sinus. If left untreated, these openings may cause chronic maxillary sinusitis. Although small defects (diameter <5 mm) may close spontaneously, larger communications require surgical intervention. Various studies have been conducted on OAC closure using a platelet-rich fibrin (PRF) membrane; most of these prior studies have involved simple direct application of PRF clots. This study introduces a new "double-barrier technique" using PRF for closure of an OAF involving sinus mucosal lifting and closure. The PRF material is inserted into the prepared maxillary sinus space, and the buccal advancement flap covers the oral side. This technique was successfully used to treat two patients with chronic OAF in the posterior maxillary region after implant removal or tooth extraction. The use of a PRF membrane in a double-barrier technique may have advantages in soft-tissue healing and could enable easy closure of chronic OAF with minimal trauma.

Analysis of Short Channel Effects Using Analytical Transport Model For Double Gate MOSFET

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.45-49
    • /
    • 2007
  • The analytical transport model in subthreshold regime for double gate MOSFET has been presented to analyze the short channel effects such as subthreshold swing, threshold voltage roll-off and drain induced barrier lowering. The present approach includes the quantum tunneling of carriers through the source-drain barrier. Poisson equation is used for modeling thermionic emission current, and Wentzel-Kramers-Brillouin approximations are applied for modeling quantum tunneling current. This model has been used to investigate the subthreshold operations of double gate MOSFET having the gate length of the nanometer range with ultra thin gate oxide and channel thickness under sub-20nm. Compared with results of two dimensional numerical simulations, the results in this study show good agreements with those for subthreshold swing and threshold voltage roll-off. Note the short channel effects degrade due to quantum tunneling, especially in the gate length of below 10nm, and DGMOSFETs have to be very strictly designed in the regime of below 10nm gate length since quantum tunneling becomes the main transport mechanism in the subthreshold region.