• Title/Summary/Keyword: Communication RF Signal

Search Result 345, Processing Time 0.024 seconds

Location Accuracy Analysis and Accuracy Improvement Method of Pattern Matching Algorithm Using Database Construction Algorithm (패턴매칭 알고리즘의 측위 성능 분석 및 데이터베이스 구축 알고리즘을 이용한 정확도 향상 방법)

  • Ju, Yeong-Hwan;Park, Yong-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.86-94
    • /
    • 2009
  • Currently, positioning methods for LBS(Location Based Service) are GPS and network-based positioning techniques that use mobile communication networks. In these methods, however, the accuracy of positioning decreases due to the propagation delay caused by the non-line-of-sight(NLOS) effect and the repeater. To address this disadvantage, the CDMA system uses Pattern Matching algorithm. The Pattern Matching algorithm constructs a database of the propagation characteristics of the RF signals measured during the GPS positioning along with the positioned locations, so that the location can be provided by comparing the propagation characteristics of the received signals and the database, upon a user's request. In the area where GPS signals are not received, however, a database cannot be constructed. There are problem that the accuracy of positioning decreases due to the area without a database Because Pattern Matching algorithm depend on database existence. Therefore, this paper proposed a pilot signal strength prediction algorithm to enable construction of databases for areas without databases, so as to improve the performance of the Pattern Matching algorithm. The database was constructed by predicting the pilot signals in the area without a database using the proposed algorithm, and the Pattern Matching algorithm analysed positioning performance.

A Study on Apparatus of Smart Wearable for Mine Detection (스마트 웨어러블 지뢰탐지 장치 연구)

  • Kim, Chi-Wook;Koo, Kyong-Wan;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.263-267
    • /
    • 2015
  • current mine detector can't division the section if it is conducted and it needs too much labor force and time. in addition to, if the user don't move the head of sensor in regular speed or move it too fast, it is hard to detect a mine exactly. according to this, to improve the problem using one direction ultrasonic wave sensing signal, that is made up of human body antenna part, main micro processor unit part, smart glasses part, body equipped LCD monitor part, wireless data transmit part, belt type power supply part, black box type camera, Security Communication headset. the user can equip this at head, body, arm, waist and leg in removable type. so it is able to detect the powder in a 360-degree on(under) the ground whether it is metal or nonmetal and it can express the 2D or 3D film about distance, form and material of the mine. so the battle combats can avoid the mine and move fast. also, through the portable battery and twin self power supply system of the power supply part, combat troops can fight without extra recharge and we can monitoring the battle situation of distant place at the command center server on real-time. and then, it makes able to sharing the information of battle among battle combats one on one. as a result, the purpose of this study is researching a smart wearable mine detector which can establish a smart battle system as if the commander is in the site of the battle.

Underwater Experiment on CSMA/CA Protocol Using Commercial Modems (상용 모뎀 제어를 통한 수중 CSMA/CA 프로토콜 시험)

  • Cho, Junho;Lee, Sang-Kug;Shin, Jungchae;Lee, Tae-Jin;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.457-465
    • /
    • 2014
  • This paper introduces a test bed for communication protocol schemes of underwater acoustic sensor network, and also shows experimental results obtained from the test bed. As a testing protocol, carrier sense multiple access/collision avoidance (CSMA/CA) is evaluated on underwater acoustic channel. A sensor node is equipped with a DSP control board of ATmega2560 and a commercial underwater modem produced by Benthos. The control board not only manipulates a GPS signal to acquire the information of location and time, but also controls the underwater modem to operate according to the procedure designed for a given testing protocol. Whenever any event takes place such as exchanging control/data packets between underwater modems and acquiring location and timing information, each sensor node reports them through radio frequency (RF) air interface to a central station located on the ground. The four kinds of packets for CSMA/CA, RTS(Request To Send), CTS(Clear to Send), DATA, ACK(Acknowledgement) are designed according to the underwater communication environment and are analyzed through the lake experiment from the point of feasibility of CSMA/CA in underwater acoustic communications.

A Study on the Mixer for Satellite Communication at Ku-Band (위성통신용 Ku-Band 믹서에 관한 연구)

  • Her, Keun;Ryou, Yeon-Guk;Hong, Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.835-840
    • /
    • 1993
  • In this paper a FET mixer is designed realized by small-signal S-parameter using microwave CAD, LINMIC + at Ku-band. The mixer has conversion gain 9.88dB at 14GHz RF, 1GHz IF, and + 1dBm LO imput. The maximum conversion gain is obtained 11.71dB at 1.1GHz. The result shows that the FET mixer does not need pre-and/or IF amplifier. The mixer maintains the desired conversion gain with low LO power level. The conversion gain of the mixer is higher than the available gain of a amplifier, which is experimentally verified.

  • PDF

A Triple-Band Transceiver Module for 2.3/2.5/3.5 GHz Mobile WiMAX Applications

  • Jang, Yeon-Su;Kang, Sung-Chan;Kim, Young-Eil;Lee, Jong-Ryul;Yi, Jae-Hoon;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • A triple-band transceiver module for 2.3/2.5/3.5 GHz mobile WiMAX, IEEE 802.16e, applications is introduced. The suggested transceiver module consists of RFIC, reconfigurable/multi-resonance MIMO antenna, embedded PCB, mobile WiMAX base band, memory and channel selection front-end module. The RFIC is fabricated in $0.13{\mu}m$ RF CMOS process and has 3.5 dB noise figure(NF) of receiver and 1 dBm maximum power of transmitter with 68-pin QFN package, $8{\times}8\;mm^2$ area. The area reduction of transceiver module is achieved by using embedded PCB which decreases area by 9% of the area of transceiver module with normal PCB. The developed triple-band mobile WiMAX transceiver module is tested by performing radio conformance test(RCT) and measuring carrier to interference plus noise ratio (CINR) and received signal strength indication (RSSI) in each 2.3/2.5/3.5 GHz frequency.

Transmission of GPS Signal using PCS and it's application to GIS (PCS를 이용한 GPS신호의 전송 및 그의 응용에 대한 연구)

  • Kim, J.C.;Lee, J.H.;Kim, K.I.;Park, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.555-557
    • /
    • 1998
  • 본 연구에서는 PCS(개인통신서비스)를 이용한 신호처리를 하기위한 시스템의 구축과 그의 응용에 관해서 알아보고자 한다. 신호처리를 위해서는 GPS(Global Positioning System)신호를 사용하였으며 그 응용을 위해서 GIS(Geographic Information System)를 이용하고자 한다. GPS(Global Positioning System)는 안테나 및 엔진을 이용하여 이동 물체의 현재의 위치를 파악하는 위치판별시스템이다. 종래에는 이러한 시스템의 통신을 위해서 RF 무선통신을 이용하였으나 본 연구에서는 PCS(Personal Communication Service)를 이용하여 통신을 함으로써 이러한 위치정보시스템을 설치하는 비용을 최소화 할 수 있는 방안을 강구하여 실용성 있는 시스템을 개발하고자 한다. 또한 이동체의 GPS신호를 기지국이나 기타 다른 이동체의 PCS에서도 송신할 수 있는 다중통신 시스템을 갖추고자 하며 이를 위해서 수신국은 PCS 뿐만 아니라 유선전화망을 이용할 수 있게 개발 하고자 한다. 한편 개발된 시스템을활용하기 위해서 기존의 GIS(Geographic Information System)에의 적용을 위한 기초실험을 하고자 한다.

  • PDF

A RF MEMS Transmitter Based on Flexible Printed Circuit Boards (연성 인쇄 회로 기판을 이용한 초고주파 MEMS 송신기 연구)

  • Myoung, Seong-Sik;Kim, Seon-Il;Jung, Joo-Yong;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper presents the flexible MEMS transmitter based on flexible printed circuit board or FPCB, which can be transformed to arbitrary shape. The FPCB is suitable to fabricate light weight and small size modules with the help of its thin thickness. Moreover a module based on FPCB can be attached on the arbitrary curved surface due to its flexible enough to be lolled up like paper. In this paper, the flexible MEMS transmitter integrated on FPCB for a short-distance sensor network which is based on orthogonal frequency division multiplexing(OFDM) communication system is proposed. The active device of the proposed flexible MEMS transmitter is fabricated on InGaP/GaAs HBT process which has been used for power amplifier design to take advantages of high linear and high efficient characteristics. Moreover, the passive devices such as the filter and signal lines are integrated and fabricated on the FPCB board. The performance of the fabricated flexible MEMS transmitter is analyzed with EVM characteristics of the output signal.

Magneto-inductive Wave in Periodic Chain of Ferrite Cores and Chip Capacitors (페라이트 코어와 칩캐패시터의 주기적 연결구조에서 발생하는 자기유도파)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2015
  • In this paper, a magneto-inductive wave generated in a chain of LC resonators fabricated with Ni-Zn ferrite cores and chip capacitors is presented. RF signal propagates to neighbor resonator one by one as a consequence of the magnetical coupling between two resonators in the device. The magnetical coupling is due to the mutual inductances along the chain of resonators. So, the signal amplitude (${\approx}$ coupling intensity) is dependent of the mutual inductance which can be adjusted by applied magnetic field. In order to demonstrate the device, some experiments have been carried out systemically. The transmission characteristics of a magneto-inductive wave could be controlled by applied external magnetic field. The device composed of 5 resonators; the center frequencies were estimated to be 32 MHz and 38 MHz with the external magnetic flux density of 75 Oe and 222 Oe, respectively. We expect that the reported results could open a promising way to a high variety of applications in one- and two-dimensional functional devices, such as transducers, delay lines, power dividers and couplers.

Web-based Measurement of ECU Signals on Vehicle using Embedded Linux

  • Choi, Kwang-Hun;Lee, Lee;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-142
    • /
    • 2004
  • In this paper, we present a new method for monitoring of ECU's sensor signals of vehicle. In order to measure the ECU's sensor signals, the interfaced circuit is designed to communicate ECU and the Embedded Linux is used to monitor communication result through Web the Embedded Linux system and this system is said "ECU Interface Part". In ECU Interface Part the interface circuit is designed to match voltage level between ECU and SA-1110 micro controller and interface circuit to communicate ECU according to the ISO, SAE communication protocol standard. Because Embedded Linux does not allow to access hardware directly in application level, anyone who wants to modify any low level hardware must develop device driver. To monitor ECU's sensor signals the most important thing is to match serial level between ECU and ECU Interface Part. It means to communicate correctly between two hardware we need to match voltage and signal level, and need to match baudrate. The voltage of SA-1110 is 0 ${\sim}$ +3.3V and ECU is 0 ${\sim}$ +12V and, ECU's communication Line K does multiple operation so, the interface circuit is used to match voltage and signal level. In Addition to ECU's baudrate is 10400bps, it's not standard baudrate in computer environment. So, we need to develop a device driver to control the interface circuit, and change baudrate. To monitor ECU's sensor signals through web there's a network socket program is working in Embedded Linux. It works as server program and manages user's connections and commands. Anyone who wants to monitor ECU's sensor signals he just only connect to Embedded Linux system with web browser then, Embedded Linux webserver will return the ActiveX webbased measurement software. It works in web browser and inits ECU, as a result it returns sensor signals through web. All the programs are developed with GCC(GNU C Compiler) and, webbased measurement software is developed with Borland C++ Builder.

  • PDF

Dual-Band Six-Port Direct Conversion Receiver with I/Q Mismatch Calibration Scheme for Software Defined Radio (Software Defined Radio를 위한 I/Q 부정합 보정 기능을 갖는 이중 대역 Six-Port 직접변환 수신기)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.651-659
    • /
    • 2010
  • In this paper, a new six-port direct conversion receiver for high-speed multi-band multi-mode wireless communication system such as software defined radio(SDR) is proposed. The designed receiver is composed of two CMOS four-port BPSK receivers and a dual-band one-stage polyphase filter for quadrature LO signal generation. The four-port BPSK receiver, implemented in 0.18 ${\mu}m$ CMOS technology for the first time in microwave-band, is composed of two active combiners, an active balun, two power detector, and an analog decoder. The proposed polyphase filter adopt type-I architecture, one-stage for reduction of the local oscillator power loss, and LC resonance structure instead of using capacitor for dual-band operation. In order to extent the operation RF bandwidth of the proposed six-port receiver, we include I/Q phase and amplitude calibration scheme in the six-port junction and the power detector. The calibration range of the phase and amplitude mismatch in the proposed calibration scheme is 8 degree and 14 dB, respectively. The validity of the designed six-port receiver is successfully demonstrated by modulating M-QAM, and M-PSK signal with 40 Msps in the two-band of 900 MHz and 2.4 GHz.