• 제목/요약/키워드: Common-Mode

검색결과 858건 처리시간 0.035초

공중파 제거를 위한 x-DSL 고속화 장치 개발 (Development of the speed up x-DSL extender for AM, HF rejection)

  • 민경찬;오호석;강정진;김신령;장학신
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.9-14
    • /
    • 2008
  • 현재 인터넷 통신에 주로 사용하고 있는 x-DSLL 제품에 있어, ADSL은 대략 3.5km의 전송거리를 갖고 VDSL은 2km 이내의 전송거리를 갖는다. 즉, 전화선을 이용한 인터넷 전송속도는 전송선로의 특성상 통신속도와 반비례하여 전송거리가 결정되는 물리적 구조를 갖는다. 인터넷 전송방식에 따른 통신속도를 결정하는 또 다른 요소로 AM방송에 의한 ADSL회선의 속도저하, 단파통신에 의해 VDSL의 전송대역과 중첩되어 속도를 저하 시킨다. 본 연구에서는 Field to cable에 의해 유도된 공중파를 제거시키면서 신호를 증폭 전송대역을 최대로 확보하여 최적거리내 확보된 통신속도로 전송거리를 2배정도 향상시키는 제품개발에 관한 연구결과이다.

  • PDF

기생 커패시턴스 저감형 공통모드초크의 특성해석에 관한 연구 (A Study on Characteristics Analysis of Common-Mode Choke with Reduced Parasitic Capacitance)

  • 원재선;김희승;김종해
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.137-143
    • /
    • 2015
  • This paper presents the intra capacitance modeling based on the winding method and section bobbin for CM choke capable of EMI attenuation of broad bands from lower to higher frequency bands and high frequency type common-mode choke capable of EMI attenuation of high frequency band used in the EMI Block of LED-TV SMPS. The case of high frequency type CM choke can be explained by the parasitic capacitance of three types of CM choke. The winding method of section bobbin type is smaller than the others. The first resonant frequency of the proposed CM choke tends to increase as the parasitic capacitance becomes small and its impedance characteristics improved performance as the first resonant frequency increases. The CM chokes of the proposed section bobbin type shows that in the future, the method may have practical use in LED/LCD-TV SMPS and in several applications, such as LED lighting, adapters, and so on.

Carrier Phase-Shift PWM to Reduce Common-Mode Voltage for Three-Level T-Type NPC Inverters

  • Nguyen, Tuyen D.;Phan, Dzung Quoc;Dao, Dat Ngoc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1197-1207
    • /
    • 2014
  • Common-mode voltage (CMV) causes overvoltage stress to winding insulation and damages AC motors. CMV with high dv/dt causes leakage currents, which create noise problems for equipment installed near the converter. This study proposes a new pulse-width modulation (PWM) strategy for three-level T-type NPC inverters. This strategy substantially eliminates CMV. The principle for selecting suitable triangle carrier signals for the three-level T-type NPC is described. The proposed method can mitigate the peak value of CMV by 50% compared with the phase disposition pulse-width modulation method. Furthermore, the proposed method exhibits better harmonic spectrum and lower root mean square value for the CMV than those of the reduced-CMV method on the basis of the phase opposition disposition PWM scheme with modulation index higher than 0.5. The proposed modulation can easily be implemented using software without any additional hardware modifications. Both simulation and experimental results demonstrate that the proposed carrier phase-shift PWM method has good output waveform performance and reduces CMV.

A New Active Zero State PWM Algorithm for Reducing the Number of Switchings

  • Yun, Sang-Won;Baik, Jae-Hyuk;Kim, Dong-Sik;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.88-95
    • /
    • 2017
  • To reduce common-mode voltage (CMV), various reduced CMV pulse width modulation (RCMV-PWM) algorithms have been proposed, including active zero state PWM (AZSPWM) algorithms, remote state PWM (RSPWM) algorithms, and near state PWM (NSPWM) algorithms. Among these algorithms, AZSPWM algorithms can reduce CMV, but they increase the number of switchings compared to the conventional space vector PWM (CSVPWM). This paper presents a new AZSPWM algorithm for reductions in both the CMV and total number of switchings in BLAC motor drives. Since the proposed AZSPWM algorithm uses only active voltage vectors for motor control, it reduces CMV by 1/3 compared to CSVPWM. The proposed AZSPWM algorithm also reduces the total number of switchings compared to existing AZSPWM algorithms by eliminating the switchings required from one sector to the next. The performance of the proposed algorithm is verified by analyses, simulations, and experimental results.

종래의 차동증폭기를 사용한 인공위성 배터리 셀 전압 감시 시스템 (Satellite Battery Cell Voltage Monitor System Using a Conventional Differential Amplifier)

  • 구자춘;최재동;최성봉
    • 한국항공우주학회지
    • /
    • 제33권2호
    • /
    • pp.113-118
    • /
    • 2005
  • 본 논문은 한쪽 또는 양쪽의 측정 점들이 종래의 차동증폭기에서 허용되는 전압 범위를 초과할 때 차동전압 측정을 위한 인공위성 배터리 셀 전압 감시 시스템을 제시하였다. 본 시스템은 다수개의 직렬로 연결된 셀들로 구성된 재충전 가능한 인공위성 배터리에서 몇몇의 셀 전압들이 높은 공통모드 전압에서 측정될 때 각 셀 전압 감시를 위해 특히 유용하다.

Performance Analysis and Comparison of Post-Fault PWM Rectifiers Using Various Space Vector Modulation Methods

  • Zhu, Chong;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2258-2271
    • /
    • 2016
  • In this paper, some crucial performance characteristics related to the operational reliability of the post-fault Pulse Width Modulated (PWM) rectifiers, such as line current harmonic distortion, Common Mode Voltage (CMV), and current stress on the capacitors, are fully investigated. The aforementioned performance characteristics of post-fault rectifiers are highly dependent on the utilized space vector modulation (SVM) schemes, which are also examined. Detailed analyses of the three most commonly used SVM schemes for post-fault PWM rectifiers are provided, revealing the major differences in terms of the zero vector synthesis approaches. To compare the performances of the three SVM schemes, the operating principles of a post-fault rectifier are presented with various SVM schemes. Using analytical and numerical methods in the time domain, the performances of the line current distortion, common mode voltage and capacitor current are evaluated and compared for each SVM scheme. The proposed analysis demonstrates that the zero vector synthesis approaches of the considered methods have significant impacts on the performance characteristics of rectifiers. In addition, the advantages and disadvantages of the proposed SVM schemes are discussed. The experimental results verify the effectiveness and validity of the proposed analysis.

영상태 벡터를 사용하지 않는 매트릭스 컨버터의 공통모드 전압 저감에 관한 연구 (The Reduction of Common-Mode Voltage in Matrix Converter without Using Zero Space Vector)

  • 윈민항;이홍희;정의헌;전태원;김흥근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.638-642
    • /
    • 2005
  • This paper proposes a modified space-vector pulse width modulation (PWM) strategy which can restrict the common-mode voltage for three-phase to three-phase matrix converter and still keep sinusoidal input and output waveforms and unity power factor at the input side. The proposed control method has been developed based on contributing the appropriate space vectors instead of using zero space vectors. The advantages of this proposed method is to reduce the peak value of common-mode voltage to 42% beside the lower high harmonic components as compared to the conventional SVM method. Hence, the new table is also presented with the new space vector rearrangement. Furthermore, the voltage transfer ratio is unaffected by the proposed method. A simulation of the overall system has been carried out to validate the advantages of the proposed method.

  • PDF

A Singular Value Decomposition based Space Vector Modulation to Reduce the Output Common-Mode Voltage of Direct Matrix Converters

  • Guan, Quanxue;Yang, Ping;Guan, Quansheng;Wang, Xiaohong;Wu, Qinghua
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.936-945
    • /
    • 2016
  • Large magnitude common-mode voltage (CMV) and its variation dv/dt have an adverse effect on motor drives that leads to early winding failure and bearing deterioration. For matrix converters, the switch states that connect each output line to a different input phase result in the lowest CMV among all of the valid switch states. To reduce the output CMV for matrix converters, this paper presents a new space vector modulation (SVM) strategy by utilizing these switch states. By this mean, the peak value and the root mean square of the CMV are dramatically decreased. In comparison with the conventional SVM methods this strategy has a similar computation overhead. Experiment results are shown to validate the effectiveness of the proposed modulation method.

3상 유도전동기 구동장치의 동상모드 전류 능동 제거법 (An Active Cancellation Method for the Common Mode Current of the Three-Phase Induction Motor Drives)

  • Uzzaman, Tawfique;Kim, Unghoe;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.96-97
    • /
    • 2019
  • Pulse Width Modulation (PWM) is a widely adopted technique to drive the motor using the voltage source inverters. Since they generate high frequency Common Mode (CM) Voltage, a high shaft voltage in induction motor is induced which leads to parasitic capacitive currents causing adverse effects such as premature deterioration of ball bearings and high levels of electromagnetic emissions. This paper presents an Active Cancellation Circuit (ACC) which can significantly reduce the CM voltage hence the common mode current in the three phase induction motor drives. In the proposed method the CM voltage is detected by the capacitors and applied to the frame of the motor to cancel the CM voltage hence the CM current. Unlike the conventional methods the proposed method does not insert the transformer in between the inverter and motor, a high power rating three phase transformer is not required and no losses associated with it. In addition the proposed method is applicable to any kind of PWM motor drives regardless of their PWM methods. The effectiveness of the proposed method is proved by the experiments with a three phase induction motor (1.1kW 415V/60Hz) combined with a three phase voltage source inverter modulated by the Space Vector Modulation (SVM).

  • PDF

매연여과장치 재생을 위한 커먼레일 디젤엔진의 연소 최적화에 관한 연구 (A Study on the Combustion Optimization of a Common Rail Direct Injection Diesel Engine for Regeneration of the Diesel Particulate Filter)

  • 강중훈;김만영;윤금중
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.167-173
    • /
    • 2005
  • Thermal regeneration means burning-off and cleaning-up the particulate matters piled up in DPF(diesel particulate filter), and it requires both high temperature $(550\~600^{\circ}C)$ and appropriate concentration of oxygen at DPF entrance. However, it is not easy to satisfy such conditions because of the low temperature window of the HSDI(high speed direct injection) diesel engine(approximately $200\~350^{\circ}C$ at cycle). Therefore, this study is focused on the method to raise temperature using the trade-off relation between temperature, oxygen concentration, and the influence of many parameters of common rail injection system including post injection. After performing an optimal mapping of the common rail parameters for regeneration mode, the actual cleaning process during regeneration mode is investigated and evaluated the availability of the regeneration mode mapping through regenerating soot trapped in the DPF.